Integrable discretizations of integrable PDE's

A. Pogrebkov

Steklov Mathematical Institute and NRU Higher School of Economics, Moscow, Russia

Workshop on Integrable Nonlinear Equations
Mikulov, Czech Republic, October 18 - 24, 2015

Integrability of the PDE's is closely related to degeneracy of dispersion laws (E. Zakharov and E. I. Shulman (1980)). Say, integrability of the Davey-Stewartson (DSII) equation

$$
\begin{aligned}
& i(-1)^{j} \partial_{t} q_{j}+\partial_{x}^{2} q_{j}-\partial_{y}^{2} q_{j}+2 q_{1} q_{2} q_{j}+v q_{j}=0, \quad j=1,2, \\
& \partial_{x}^{2} v-\partial_{y}^{2} v=-4 \partial_{x}^{2}\left(q_{1} q_{2}\right)
\end{aligned}
$$

follows from identity $2\left(z^{2}+w^{2}\right)=(z-w)^{2}+(z+w)^{2}$, where z and w are any commuting variables.
Let A, B_{1} and B_{2} be some arbitrary operators,

$$
B=\left(\begin{array}{cc}
0, & B_{1} \\
B_{2}, & 0
\end{array}\right) \text { and } \sigma=\sigma_{3}=\left(\begin{array}{cc}
1, & 0 \\
0, & -1
\end{array}\right) .
$$

Then the above identity means that we have commutator identity

$$
2 \sigma\left[A^{2} \sigma, B\right]=[A,[A, B]]+[A \sigma,[A \sigma, B]]
$$

Let now B depends on three "times:" t_{1}, t_{2}, t_{3} as

$$
B_{t_{1}}=[A, B], \quad B_{t_{2}}=i[A \sigma, B], \quad B_{t_{3}}=i\left[A^{2} \sigma, B\right]
$$

then B obeys: $2 i \sigma B_{t_{3}}+\partial_{t_{1}}^{2} B-\partial_{t_{2}}^{2} B=0$, i.e. linearized version of the DSII equation.

Operator realization. Let operator B be x-dependent function of operator A and impose condition, that $B_{t_{1}}=B_{x}$. Taking $B_{t_{1}}=[A, B]$ into account we get that

$$
A=\partial_{x}-i z, \text { where } z \in \mathbb{C}
$$

In other words B is pseudo-differential operator

$$
(B f)(x)=\int_{\mathbb{R}} d p e^{i p x} B(x, i(p-z)) \widetilde{f}(p), \quad \widetilde{f}(p)=\frac{1}{2 \pi} \int d x e^{-i p x} f(x)
$$

which symbol $B(x, z)$ is defined in the complex plane of the second argument: $x \in \mathbb{R}, z \in \mathbb{C}$.

Correspondingly, $B_{t_{2}}=i\left[\left(\partial_{x}-i z\right) \sigma, B\right], B_{t_{3}}=i\left[\left(\partial_{x}-i z\right)^{2} \sigma, B\right]$, so the symbol $B(t, z)$ has the form

$$
B(t, z)=e^{2 i t_{1} z_{\operatorname{Im}}+2 i \sigma t_{2} z_{\operatorname{Re}}+2 i \sigma t_{3}\left(z_{\mathrm{Im}}^{2}-z_{\operatorname{Re}}^{2}\right)} b(z)
$$

where $b(z)$ is off-diagonal 2×2 matrix depending on z only.

D-bar problem (dressing) Dependence of the symbol on the complex parameter z enables to associate to any operator F with symbol $F(x, z)$ its d-bar derivative: $\bar{\partial} F$ with symbol $\frac{\partial(F(x, z))}{\partial \bar{z}}$. Now we introduce new operator as solution of the following problem:

$$
\bar{\partial} \nu=\nu B
$$

normalized by condition that for $z \rightarrow \infty$

$$
\nu=1+u A^{-1}+o\left(z^{-1}\right),
$$

where u is (2×2 matrix) multiplication operator. In what follows we assume unique solvability of this problem. We introduce dependence of operator ν on times by means of the known time dependence of operator B : $\bar{\partial} \nu(t)=\nu(t) B(t)$. Thus

$$
\bar{\partial}\left(\nu_{t_{1}}+\nu A\right)=\left(\nu_{t_{1}}+\nu A\right) B
$$

This means that $\nu_{t_{1}}+\nu A=(A+X) \nu$, where X is some multiplication operator. Thanks to the asymptotic condition we get $X=0$, so that

$$
\nu_{t_{1}}=[A, \nu]
$$

Analogously we derive that

$$
\nu_{t_{2}}=i[A \sigma, \nu]-i[\sigma, u] \nu
$$

that thanks to $\nu_{t_{1}}=[A, \nu]$ can be written in the form $\nu_{t_{2}}+i \nu \sigma A=i \sigma \nu_{t_{1}}+$ $i \sigma \nu A-i[\sigma, u] \nu$, that in terms of the symbols takes the form

$$
\nu_{t_{2}}(t, z)+z \nu(t, z) \sigma=i \sigma \nu_{t_{1}}(t, z)+z \sigma \nu(t, z)-i[\sigma, u(t)] \nu(t, z)
$$

Introducing the Jost solution as $\varphi(t, z)=\nu(t, z) e^{-i z t_{1}+z \sigma t_{2}}$ we get the two dimensional Zakharov-Shabat L-operator

$$
\varphi_{t_{2}}(t, z)=i \sigma \varphi_{t_{1}}(t, z)-i[\sigma, u(t)] \varphi(t, z)
$$

In the same way we get $\varphi_{t_{3}}=i \sigma \varphi_{t_{1} t_{1}}-i \sigma \varphi_{t_{1}}+\left(i[\sigma, u]-i \sigma u_{t_{1}}-i[\sigma, w]\right) \varphi$

Discretization (Darboux transformation). Let besides t-dependence

$$
B_{t_{1}}=[A, B], \quad B_{t_{2}}=i[A \sigma, B], \quad B_{t_{3}}=i\left[A^{2} \sigma, B\right]
$$

operator B depends on the discrete variable n : $B(t, n)$. Let us denote $B^{(1)}(n)=$ $B(n+1)$ and let this dependence is given by means of the same operator $A=$ $\partial_{x}-i z$ as

$$
B^{(1)}=(A-a) B(A-a)^{-1}, \text { where } a \text { is a constant diagonal matrix. }
$$

This means that with respect to n, t_{1} and t_{2} we have difference-differential equation:

$$
B_{t_{2}}^{(1)}-B_{t_{2}}=i \sigma\left(B_{t_{1}}^{(1)}+B_{t_{1}}\right)+2 i \sigma B^{(1)} a-2 i \sigma a B
$$

and t_{3} is the continuous symmetry of this equation. Again we set: $\bar{\partial} \nu^{(1)}=$ $\nu^{(1)} B^{(1)}$, so that

$$
\bar{\partial} \nu^{(1)}(A-a)=\nu^{(1)}(A-a) B
$$

Then we derive that $\nu^{(1)}(A-a)=\left(A-a+u_{1}\right) \nu$, where $u_{1}=u^{(1)}-u$.

In this way we arrive to the Lax pair:

$$
\begin{aligned}
& \varphi_{t_{2}}=i \sigma \varphi_{t_{1}}-i[\sigma, u] \varphi \\
& \varphi^{(1)}=\varphi_{t_{1}}+\left(u_{1}-a\right) \varphi
\end{aligned}
$$

and equation of compatibility for $u=v^{\text {diag }}+w^{\text {antidiag }}$ is

$$
\begin{aligned}
& v_{t_{2}}^{(1)}-v_{t_{2}}=i \sigma v_{t_{1}}^{(1)}+i \sigma v_{t_{1}}+2 i \sigma\left(w_{1}-a\right) v-2 i \sigma v^{(1)}\left(w_{1}-a\right) \\
& w_{t_{2}}-i \sigma w_{t_{1}}=-2 i \sigma v^{2}
\end{aligned}
$$

Another realization of operators. It is reasonable to consider another realization of operators. Let us start with Let we have a space of infinite sequences $f=\{f(n)\}, n \in \mathbb{Z}$, and let T denotes shift operator: $(T f)(n)=f(n+1)$. For any operator B in this space we introduce dependence on the discrete variable m and two "times" t_{1} and t_{2} by means of the same relations as above:
$B^{(1)}=(A-a) B(A-a)^{-1}, \quad B_{t_{1}}=[A, B], \quad B_{t_{2}}=i[A \sigma, B], \quad[a, \sigma]=0$
and we impose condition that $B^{(1)}=T B T^{-1}$. This means that now $A=z T+$ a and we consider B to be function of operator A, i.e., B is "pseudo-matrix" operator in this space:

$$
(B f)(n)=\oint_{|\zeta|=1} \frac{d \zeta}{2 \pi i} \zeta^{n-1} B(n, z \zeta) \tilde{f}(\zeta), \quad \widetilde{f}(\zeta)=\sum_{n \in \mathbb{Z}} \zeta^{-n} f(n)
$$

Again we define operator ν by means of the d-bar problem

$$
\bar{\partial} \nu=\nu B, \quad \nu=1+u A^{-1}+o\left(z^{-1}\right), \quad z \rightarrow \infty
$$

The construction analogous to the above gives:

$$
\begin{aligned}
& \varphi_{t_{1}}=\varphi^{(1)}-\left(u_{1}-a\right) \varphi \\
& \varphi_{t_{2}}=i \sigma \varphi^{(1)}-i\left(\sigma u^{(1)}+(u+a) \sigma\right) \varphi
\end{aligned}
$$

Further discretization of this equation leads to the special case of the nonAbelian Hirota difference equation:

$$
u^{(12)}\left(u^{(2)}-u^{(1)}+a_{12}\right)+a_{12} u^{(3)}+\text { cycle }\{1,2,3\}=0
$$

Here u denotes operator $u\left(m_{1}, m_{2}, m_{3}\right)$ and

$$
\begin{aligned}
& u^{(1)}(m)=u\left(m_{1}+1, m_{2}, m_{3}\right), \quad u^{(2)}(m)=u\left(m_{1}, m_{2}+1, m_{3}\right), \quad \ldots \\
& u_{i}(m)=u^{(i)}(m)-u(m)
\end{aligned}
$$

Constant operators a_{1}, a_{2}, a_{3} mutually commute and $a_{i j}=a_{i}-a_{j}$. This equation is condition of compatibility of the system

$$
\begin{aligned}
& \varphi^{(2)}=\varphi^{(1)}+\left(u^{(2)}-u^{(1)}+a_{12}\right) \varphi \\
& \varphi^{(3)}=\varphi^{(2)}+\left(u^{(3)}-u^{(2)}+a_{23}\right) \varphi \\
& \varphi^{(1)}=\varphi^{(3)}+\left(u^{(1)}-u^{(3)}+a_{31}\right) \varphi
\end{aligned}
$$

so the Lax pair is any two of these equations.

In our approach this equation appears as commutator identity

$$
\left(A-a_{1}\right)\left(A-a_{2}\right) B\left(A-a_{1}\right)^{-1}\left(A-a_{2}\right)^{-1} a_{12}+a_{12}\left(A-a_{3}\right) B\left(A-a_{3}\right)^{-1}+\text { cycle }=0
$$ where we assume that operator B acts in $V \otimes W$, and $A-a_{j}$ stands for $A \otimes$ $I-I \otimes a_{j}, j=1,2,3$ where A is operator in V, and a_{j} in W. Introducing now evolution by means of

$$
\begin{aligned}
& B^{(1)}=\left(A-a_{1}\right) B\left(A-a_{1}\right)^{-1}, \quad B^{(2)}=\left(A-a_{2}\right) B\left(A-a_{2}\right)^{-1}, \\
& B^{(3)}=\left(A-a_{3}\right) B\left(A-a_{3}\right)^{-1}
\end{aligned}
$$

we see that $B(m)$ obeys the difference equation

$$
B^{(12)} a_{12}+a_{12} B^{(3)}+B^{(23)} a_{23}+a_{23} B^{(1)}+B^{(31)} a_{31}+a_{31} B^{(2)}=0,
$$

or

$$
B_{12} a_{12}+\left[a_{12}, B_{3}\right]+B_{23} a_{23}+\left[a_{23}, B_{1}\right]+B_{31} a_{31}+\left[a_{31}, B_{1}\right]=0 .
$$

Dressing procedure of the type described above gives the Lax pair, as well as the Hirota difference equation.

Limiting cases. The original linear equation
$B^{(12)} a_{12}+a_{12} B^{(3)}+B^{(23)} a_{23}+a_{23} B^{(1)}+B^{(31)} a_{31}+a_{31} B^{(2)}=0, \quad a_{i j}=a_{i}-a_{j}$, and evolutions become trivial in two cases: if $a_{k} \rightarrow \infty$ for some k, or if $a_{j}=a_{i}$ for some $j \neq i$. Here we consider the first case: we substitute $a_{k} \rightarrow x a_{k}$, where x is c-number anad then for $x \rightarrow \infty$ we get

$$
B^{(k)}=a_{k}\left[B-\frac{1}{x} \partial_{t_{k}} B\right] a_{k}^{-1}+\ldots, \quad x \rightarrow \infty
$$

where $\partial_{t_{k}} B=\left[A a_{k}^{-1}, B\right]$.

Limit $a_{3} \rightarrow \infty, a_{2} \rightarrow \infty$. The identity takes the form:

$$
\begin{aligned}
\left(a_{2} B a_{2}^{-1}\right. & \left.-a_{3} B a_{3}^{-1}\right)^{(1)} a_{1}+\left(a_{2} B_{t_{2}}-a_{3} B_{t_{3}}\right)^{(1)}- \\
& -a_{2} a_{3} B_{t_{2}} a_{3}^{-1}+a_{3} a_{2} B_{t_{3}} a_{2}^{-1}-a_{1} a_{2} B a_{2}^{-1}+a_{1} a_{3} B a_{3}^{-1}=0
\end{aligned}
$$

that is antisymmetric with respect to indexes 2 and 3 . Now we have

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B_{t_{2}}=\left[\left(T_{1}+a_{1}\right) a_{2}^{-1}, B\right], \quad B_{t_{3}}=\left[\left(T_{1}+a_{1}\right) a_{3}^{-1}, B\right],
$$

Substitution: $v\left(m_{1}, t_{2}, t_{3}\right)=u\left(m_{1}, t_{2}, t_{3}\right)-m_{1} a$, Lax pair

$$
\begin{aligned}
& \alpha \psi_{t_{2}}=\psi^{(1)}+\left[\alpha w \alpha^{-1}-w^{(1)}\right] \psi \\
& \alpha^{-1} \psi_{t_{3}}=\psi^{(1)}+\left[\alpha^{-1} w \alpha-w^{(1)}\right] \psi
\end{aligned}
$$

and equation:

$$
\left(w \alpha-\alpha w^{(1)}\right)_{t_{2}}-\left(w \alpha^{-1}-\alpha^{-1} w^{(1)}\right)_{t_{3}}+\left[w \alpha-\alpha w^{(1)}, w \alpha^{-1}-\alpha^{-1} w^{(1)}\right]=0
$$

where α is a constant operator.

Limit $a_{3} \rightarrow \infty$. The $1 / x$ term gives identity

$$
\begin{aligned}
B^{(12)} a_{12} & +a_{3}\left(B^{(2)}-B^{(1)}\right)_{t_{3}}+a_{2} B^{(1)}-a_{1} B^{(2)}+ \\
& +a_{3} B^{(2)} a_{3}^{-1} a_{2}-a_{3} B^{(1)} a_{3}^{-1} a_{1}+a_{12} a_{3} B a_{3}^{-1}=0,
\end{aligned}
$$

where

$$
B^{(1)}=T_{1} B T_{1}^{-1}, \quad B^{(2)}=\left(T_{1}+a_{12}\right) B\left(T_{1}+a_{12}\right)^{-1}, \quad B_{t_{3}}=\left[\left(T_{1}+a_{1}\right) a_{3}^{-1}, B\right]
$$

so that $\bar{\partial}\left(\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}\right)=\left(\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}\right) B$. Thus again taking asymptotic into account we derive: $\nu_{t_{3}}+\nu\left(T_{1}+a_{1}\right) a_{3}^{-1}=a_{3}^{-1}\left(T_{1}+a_{3} u a_{3}^{-1}-\right.$ $\left.u^{(1)}+a_{1}\right) \nu$. Finally for $w\left(m_{1}, m_{2}, t_{3}\right)=u\left(m_{1}, m_{2}, t_{3}\right)-m_{1} a_{1}-m_{2} a_{2}$ we get Lax pair and evolution equation

$$
\begin{aligned}
& \psi_{t_{3}}=\psi^{(1)}-w_{1} \psi \\
& \psi^{(2)}=\psi^{(1)}+\left(w_{2}-w_{1}\right) \psi \\
& \left(w_{2}-w_{1}\right)_{t_{3}}+w_{12}\left(w_{2}-w_{1}\right)+\left[w_{1}, w_{2}\right]=0
\end{aligned}
$$

Highest Hirota difference equations. If we introduce, say, 4 discrete variables by means of

$$
B\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=\left(A-a_{1}\right)^{m_{1}}\left(A-a_{2}\right)^{m_{2}}\left(A-a_{3}\right)^{m_{3}}\left(A-a_{4}\right)^{m_{4}} B(\ldots)^{-1}
$$

then this function obeys linearized Hirota equation with respect to any 3 of variables m_{1}, \ldots, m_{4}. But we can introduce higher evolutions:

$$
B\left(m_{1}, m_{2}, m_{3}\right)=\left(A-a_{1}\right)^{m_{1}}\left(A-a_{2}\right)^{m_{2}}\left(A^{2}-a_{3}^{2}\right)^{m_{3}} B(\ldots)^{-1}
$$

In this way we get linear equation

$$
\begin{aligned}
& \Delta_{3}\left(\left(a_{1}+a_{3}\right) \Delta_{1}-\left(a_{2}+a_{3}\right) \Delta_{2}\right)\left(\left(a_{1}-a_{3}\right) \Delta_{1}-\left(a_{2}-a_{3}\right) \Delta_{2}\right)= \\
& =\left(a_{1}-a_{2}\right) \Delta_{1} \Delta_{2}\left(\left(a_{1}-a_{2}\right) \Delta_{1} \Delta_{2}+2 a_{1} \Delta_{1}-2 a_{2} \Delta_{2}\right), \quad \Delta_{j} B=B^{(j)}-B
\end{aligned}
$$

and Lax pair

$$
\begin{aligned}
& \varphi^{(2)}=\varphi^{(1)}+\left(u^{(2)}-u^{(1)}\right) \varphi \\
& \varphi^{(3)}=\varphi^{(11)}+\left(u^{(11)}-u^{(3)}\right) \varphi^{(1)}+w \varphi
\end{aligned}
$$

Equation:

$$
\begin{aligned}
& \left(u^{(2)}-u^{(1)}\right)^{(3)} w=w^{(2)}\left(u^{(2)}-u^{(11)}\right) \\
& w^{(2)}-w^{(1)}=\left(u^{(11)}-u^{(3)}\right)^{(2)}\left(u^{(2)}-u^{(1)}\right)^{(1)}-\left(u^{(2)}-u^{(1)}\right)^{(3)}\left(u^{(11)}-u^{(3)}\right)
\end{aligned}
$$

