On natural invariants and equivalence of planar webs

Valentin Lychagin
Institute of Control Science, Russian Academy of Science, Moscow

September 13, 2023

In memory of my friends and colleagues:
Maks Akvis and Vadim Goldberg

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found
- The event in 1867 was Paul de Saint-Robert's presentation of his test to determine whether an equation can be represented by two fixed scales and a sliding scale (as in a special slide rule).

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found
- The event in 1867 was Paul de Saint-Robert's presentation of his test to determine whether an equation can be represented by two fixed scales and a sliding scale (as in a special slide rule).
- In other words, we are interested in whether an equation in the form $F(x, y, z)=0$ can be rewritten in the form $Z(z)=X(x)+Y(y)$. The Saint-Robert criterion says this is possible if

$$
\begin{equation*}
\left(\frac{F_{x}}{F_{y}}\right)_{x y}=0 \tag{1}
\end{equation*}
$$

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found
- The event in 1867 was Paul de Saint-Robert's presentation of his test to determine whether an equation can be represented by two fixed scales and a sliding scale (as in a special slide rule).
- In other words, we are interested in whether an equation in the form $F(x, y, z)=0$ can be rewritten in the form $Z(z)=X(x)+Y(y)$. The Saint-Robert criterion says this is possible if

$$
\begin{equation*}
\left(\frac{F_{x}}{F_{y}}\right)_{x y}=0 \tag{1}
\end{equation*}
$$

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found
- The event in 1867 was Paul de Saint-Robert's presentation of his test to determine whether an equation can be represented by two fixed scales and a sliding scale (as in a special slide rule).
- In other words, we are interested in whether an equation in the form $F(x, y, z)=0$ can be rewritten in the form $Z(z)=X(x)+Y(y)$. The Saint-Robert criterion says this is possible if

$$
\begin{equation*}
\left(\frac{F_{x}}{F_{y}}\right)_{x y}=0 \tag{1}
\end{equation*}
$$

Intro

- Nomography is the graphical representation of mathematical relationships for purposes of calculation. Invented in 1880 by Maurice d'Ocagne (1862-1938), nomograms were used extensively well into the 1970s (and occasionally today) to provide engineers with fast graphical calculations of complicated formulas to a practical precision.
- A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of $n-1$ variables, the value of the unknown variable can be found
- The event in 1867 was Paul de Saint-Robert's presentation of his test to determine whether an equation can be represented by two fixed scales and a sliding scale (as in a special slide rule).
- In other words, we are interested in whether an equation in the form $F(x, y, z)=0$ can be rewritten in the form $Z(z)=X(x)+Y(y)$. The Saint-Robert criterion says this is possible if

$$
\begin{equation*}
\left(\frac{F_{x}}{F_{y}}\right)_{x y}=0 \tag{1}
\end{equation*}
$$

Hilbert's thirteenth problem

- Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form

$$
\begin{equation*}
x^{7}+a x^{3}+b x^{2}+c x+1=0 \tag{2}
\end{equation*}
$$

Hilbert's thirteenth problem

- Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form

$$
\begin{equation*}
x^{7}+a x^{3}+b x^{2}+c x+1=0 \tag{2}
\end{equation*}
$$

- Hilbert asked whether its solution, considered as a function of the three variables a, b, c can be expressed as the composition of a finite number of functions in two-variables.

Hilbert's thirteenth problem

- Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form

$$
\begin{equation*}
x^{7}+a x^{3}+b x^{2}+c x+1=0 \tag{2}
\end{equation*}
$$

- Hilbert asked whether its solution, considered as a function of the three variables a, b, c can be expressed as the composition of a finite number of functions in two-variables.
- Is there a process, whereby a function of several variables is constructed using functions of two variables?

Hilbert's thirteenth problem

- Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form

$$
\begin{equation*}
x^{7}+a x^{3}+b x^{2}+c x+1=0 \tag{2}
\end{equation*}
$$

- Hilbert asked whether its solution, considered as a function of the three variables a, b, c can be expressed as the composition of a finite number of functions in two-variables.
- Is there a process, whereby a function of several variables is constructed using functions of two variables?
- The variant of the problem for continuous functions was resolved in 1957 by Vladimir Arnold (the Kolmogorov-Arnold representation theorem), but the variant for algebraic functions remains unresolved.

Planar Webs

- A planar d-web is a family of d-foliations on the plane, being in general positions, and it is defined as:

Planar Webs

- A planar d-web is a family of d-foliations on the plane, being in general positions, and it is defined as:
- A set of smooth functions: $\left\{f_{1}, . ., f_{d}\right\}, d f_{i} \wedge d f_{j} \neq 0, i \neq j, \Longrightarrow d$-web $W\left(f_{1}, \ldots, f_{d}\right)$ with foliations $f_{i}=$ const.

Planar Webs

- A planar d-web is a family of d-foliations on the plane, being in general positions, and it is defined as:
- A set of smooth functions: $\left\{f_{1}, . ., f_{d}\right\}, d f_{i} \wedge d f_{j} \neq 0, i \neq j, \Longrightarrow d$-web $W\left(f_{1}, \ldots, f_{d}\right)$ with foliations $f_{i}=$ const.
- A set of differential 1-forms: $\left\{\omega_{1}, \ldots, \omega_{d}\right\}, \omega_{i} \wedge \omega_{j} \neq 0, i \neq j \Longrightarrow$ d-web with foliations $\left(\omega_{i}=0\right)$.

Planar Webs

- A planar d-web is a family of d-foliations on the plane, being in general positions, and it is defined as:
- A set of smooth functions: $\left\{f_{1}, . ., f_{d}\right\}, d f_{i} \wedge d f_{j} \neq 0, i \neq j, \Longrightarrow d$-web $W\left(f_{1}, \ldots, f_{d}\right)$ with foliations $f_{i}=$ const.
- A set of differential 1-forms: $\left\{\omega_{1}, \ldots, \omega_{d}\right\}, \omega_{i} \wedge \omega_{j} \neq 0, i \neq j \Longrightarrow$ d-web with foliations $\left(\omega_{i}=0\right)$.
- A set of vector fields : $\left\{X_{1}, \ldots, X_{d}\right\}, X_{i} \wedge X_{j} \neq 0, i \neq j \Longrightarrow$ d-web with foliations that are integral curves of X_{i}.

Planar Webs

- A planar d-web is a family of d-foliations on the plane, being in general positions, and it is defined as:
- A set of smooth functions: $\left\{f_{1}, . ., f_{d}\right\}, d f_{i} \wedge d f_{j} \neq 0, i \neq j, \Longrightarrow d$-web $W\left(f_{1}, \ldots, f_{d}\right)$ with foliations $f_{i}=$ const.
- A set of differential 1-forms: $\left\{\omega_{1}, \ldots, \omega_{d}\right\}, \omega_{i} \wedge \omega_{j} \neq 0, i \neq j \Longrightarrow$ d-web with foliations $\left(\omega_{i}=0\right)$.
- A set of vector fields : $\left\{X_{1}, \ldots, X_{d}\right\}, X_{i} \wedge X_{j} \neq 0, i \neq j \Longrightarrow$ d-web with foliations that are integral curves of X_{i}.
- They satisfy the following relations:
$\omega_{i} \wedge d f_{i}=0, \omega_{i}\left(X_{i}\right)=0, X_{i}\left(f_{i}\right)=0$.

Group actions

- The pseudogroup of all local diffeomorphisms of the plane $\mathcal{D i f f e o}_{2}$.

Group actions

- The pseudogroup of all local diffeomorphisms of the plane $\mathcal{D i f f e o}_{2}$.
- The pseudogroup of gauge transformations Diffeod : $\left\{f_{1}, \ldots, f_{d}\right\} \rightarrow\left\{F_{1} \circ f_{1}, \ldots, F_{d} \circ f_{d}\right\}$, where $F_{i} \in$ Diffeo $_{1}(\mathbb{R})$.

Group actions

- The pseudogroup of all local diffeomorphisms of the plane $\mathcal{D i f f e o}_{2}$.
- The pseudogroup of gauge transformations Diffeoo $\left\{f_{1}, \ldots, f_{d}\right\} \rightarrow\left\{F_{1} \circ f_{1}, \ldots, F_{d} \circ f_{d}\right\}$, where $F_{i} \in$ Diffeo $_{1}(\mathbb{R})$.
- The symmetric group \mathbf{S}_{d} :

$$
\mathbf{S}_{d} \ni \sigma:\left\{f_{1}, \ldots, f_{d}\right\} \rightarrow\left\{f_{\sigma(1)}, \ldots, f_{\sigma(d)}\right\}
$$

Ordered and non-ordered webs

- The webs $W\left(f_{1}, . ., f_{d}\right)$ we call ordered, and the sets $\bigcup_{\sigma e \mathbf{S}_{d}} W\left(f_{\sigma(1)}, \ldots, f_{\sigma(d)}\right)$ we'll call non-ordered webs

Ordered and non-ordered webs

- The webs $W\left(f_{1}, . ., f_{d}\right)$ we call ordered, and the sets $\bigcup_{\sigma e \mathbf{S}_{d}} W\left(f_{\sigma(1)}, \ldots, f_{\sigma(d)}\right)$ we'll call non-ordered webs
- Remark that the action of \mathcal{D} iffeo $_{2}$ is trivial if we fix any two components, say $\left\{f_{i}, f_{j}\right\}$.

Reduction

- Thus, in order to avoid Diffeo $_{2}$-action, we consider ordered webs as 2-dimensional surfaces in \mathbb{R}^{d}.

Reduction

- Thus, in order to avoid $\mathcal{D i f f e o}_{2}$-action, we consider ordered webs as 2-dimensional surfaces in \mathbb{R}^{d}.
- Moreover, each pair $(i, j), i \neq j$, gives us coordinates on the web surfaces.

Reduction

- Thus, in order to avoid $\mathcal{D i f f e o}_{2}$-action, we consider ordered webs as 2-dimensional surfaces in \mathbb{R}^{d}.
- Moreover, each pair $(i, j), i \neq j$, gives us coordinates on the web surfaces.
- Denote by $\pi_{i, j}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}$ the natural projections

$$
\pi_{i, j}:\left(u^{1}, \ldots ., u^{d}\right) \rightarrow\left(u^{i}, u^{j}\right)
$$

Then, web surfaces are sections of these bundles, and $\left(u^{i}, u^{j}\right)$ are coordinates on them.

Reduction

- Thus, in order to avoid Diffeo $_{2}$-action, we consider ordered webs as 2-dimensional surfaces in \mathbb{R}^{d}.
- Moreover, each pair $(i, j), i \neq j$, gives us coordinates on the web surfaces.
- Denote by $\pi_{i, j}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}$ the natural projections

$$
\pi_{i, j}:\left(u^{1}, \ldots ., u^{d}\right) \rightarrow\left(u^{i}, u^{j}\right)
$$

Then, web surfaces are sections of these bundles, and $\left(u^{i}, u^{j}\right)$ are coordinates on them.

- This interpretation allows us to avoid Diffeo $_{2}$ - action, and reduce the group action to gauge transformations and renumbering of the foliations.

Reduction

- Thus, in order to avoid $\mathcal{D i f f e o}_{2}$-action, we consider ordered webs as 2-dimensional surfaces in \mathbb{R}^{d}.
- Moreover, each pair $(i, j), i \neq j$, gives us coordinates on the web surfaces.
- Denote by $\pi_{i, j}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}$ the natural projections

$$
\pi_{i, j}:\left(u^{1}, \ldots ., u^{d}\right) \rightarrow\left(u^{i}, u^{j}\right)
$$

Then, web surfaces are sections of these bundles, and $\left(u^{i}, u^{j}\right)$ are coordinates on them.

- This interpretation allows us to avoid Diffeo $_{2}$ - action, and reduce the group action to gauge transformations and renumbering of the foliations.
- These two actions commute, and, at first, we will consider the action of the gauge group.

Jets of webs

- In order to simplify our notation, we write π instead of $\pi_{1,2}$, and denote by (x, y) the coordinates $\left(u^{1}, u^{2}\right)$ on \mathbb{R}^{2}.

Jets of webs

- In order to simplify our notation, we write π instead of $\pi_{1,2}$, and denote by (x, y) the coordinates $\left(u^{1}, u^{2}\right)$ on \mathbb{R}^{2}.
- Let $\pi_{k}: J^{k}(\pi) \rightarrow \mathbb{R}^{2}$ be bundles of k-jets of the sections of the bundle π, i.e. k-jets of planar d-webs, and let $u_{\alpha, \beta}^{i}, \alpha, \beta \in \mathbb{N}, \alpha+\beta \leq k$, be the standard coordinates in the jet space $J^{k}(\pi)$.

Jets of webs

- In order to simplify our notation, we write π instead of $\pi_{1,2}$, and denote by (x, y) the coordinates $\left(u^{1}, u^{2}\right)$ on \mathbb{R}^{2}.
- Let $\pi_{k}: J^{k}(\pi) \rightarrow \mathbb{R}^{2}$ be bundles of k-jets of the sections of the bundle π, i.e. k-jets of planar d-webs, and let $u_{\alpha, \beta}^{i}, \alpha, \beta \in \mathbb{N}, \alpha+\beta \leq k$, be the standard coordinates in the jet space $J^{k}(\pi)$.
- Denote by $j_{k}(s)$ the k-jet of the section s, or the k-jet of corresponding web.

Web and Jet Geometry

- Web, that correspondens to a section s of the bundle π, is given by the restriction on $j_{1}(s)$
functions $\left(x, y, u^{2}, \ldots, u^{d}\right)$,horisontal differential 1-forms: $\left(d x, d y, \widehat{d} u^{3}, \ldots, \widehat{d} u^{d}\right)$, where

$$
\widehat{d} u^{i}=u_{10}^{i} d x+u_{01}^{i} d y
$$

are the total differentials.

Web and Jet Geometry-2

- In order to find vector fields that describe the web, we take the 2-form

$$
\Omega=d x \wedge d y
$$

and define "Hamiltonian" vector fields X_{i} as horisontal vector fields

$$
X_{i}=a_{i} \frac{d}{d x}+b_{i} \frac{d}{d y}
$$

that satisfy the following conditions

$$
\left.X_{i}\right\rfloor \Omega=\widehat{d} u^{i}
$$

Web and Jet Geometry-2

- In order to find vector fields that describe the web, we take the 2-form

$$
\Omega=d x \wedge d y
$$

and define "Hamiltonian" vector fields X_{i} as horisontal vector fields

$$
X_{i}=a_{i} \frac{d}{d x}+b_{i} \frac{d}{d y}
$$

that satisfy the following conditions

$$
\left.X_{i}\right\rfloor \Omega=\widehat{d} u^{i}
$$

- Then,

$$
X_{i}=u_{01}^{i} \frac{d}{d x}-u_{10}^{i} \frac{d}{d y}
$$

Web and Jet Geometry-2

- In order to find vector fields that describe the web, we take the 2-form

$$
\Omega=d x \wedge d y
$$

and define "Hamiltonian" vector fields X_{i} as horisontal vector fields

$$
X_{i}=a_{i} \frac{d}{d x}+b_{i} \frac{d}{d y}
$$

that satisfy the following conditions

$$
\left.X_{i}\right\rfloor \Omega=\widehat{d} u^{i}
$$

- Then,

$$
X_{i}=u_{01}^{i} \frac{d}{d x}-u_{10}^{i} \frac{d}{d y}
$$

- The restrictions of horisontal vector fields

$$
\frac{d}{d x}, \frac{d}{d y}, X_{2}, \ldots, X_{d}
$$

on $j_{1}(s)$ are vector fields that generate the corresponding web.

Web and Jet Geometry-2

- In order to find vector fields that describe the web, we take the 2-form

$$
\Omega=d x \wedge d y
$$

and define "Hamiltonian" vector fields X_{i} as horisontal vector fields

$$
X_{i}=a_{i} \frac{d}{d x}+b_{i} \frac{d}{d y}
$$

that satisfy the following conditions

$$
\left.X_{i}\right\rfloor \Omega=\widehat{d} u^{i}
$$

- Then,

$$
X_{i}=u_{01}^{i} \frac{d}{d x}-u_{10}^{i} \frac{d}{d y}
$$

- The restrictions of horisontal vector fields

$$
\frac{d}{d x}, \frac{d}{d y}, X_{2}, \ldots, X_{d}
$$

on $j_{1}(s)$ are vector fields that generate the corresponding web.

Model

- Consider 1-dimensional bundle $\pi: \mathbb{R}^{3}(x, y, u) \rightarrow \mathbb{R}^{2}(x, y)$ with gauge action of Diffeo $_{1}$:

$$
\psi:(x, y, u) \rightarrow(x, y, \psi(u)) .
$$

Model

- Consider 1-dimensional bundle $\pi: \mathbb{R}^{3}(x, y, u) \rightarrow \mathbb{R}^{2}(x, y)$ with gauge action of Diffeo $_{1}$:

$$
\psi:(x, y, u) \rightarrow(x, y, \psi(u)) .
$$

Theorem

The field of rational differential invariants of the gauge group Diffeo $_{1-}$ action is generated by the following invariant of the first order $U=\frac{u_{0,1}}{u_{1,0}}$ and its total derivatives $U_{i, j}=\frac{d^{i+j} U}{d x^{j} d y^{j}}$.

Model

- Consider 1-dimensional bundle $\pi: \mathbb{R}^{3}(x, y, u) \rightarrow \mathbb{R}^{2}(x, y)$ with gauge action of Diffeo $_{1}$:

$$
\psi:(x, y, u) \rightarrow(x, y, \psi(u))
$$

Theorem

The field of rational differential invariants of the gauge group Diffeo $_{1}$ action is generated by the following invariant of the first order $U=\frac{u_{0,1}}{u_{1,0}}$ and its total derivatives $U_{i, j}=\frac{d^{i+j} U}{d x^{i} d y^{j}}$.

- Remark, that the restriction of the ratio U on a function $f(x, y)$ defines a vector field $\partial_{y}-U \partial_{x}$ that is tangent to the foliation $f(x, y)=$ const $_{i}$, and, therefore, also defines the foliation.

Model

- Consider 1-dimensional bundle $\pi: \mathbb{R}^{3}(x, y, u) \rightarrow \mathbb{R}^{2}(x, y)$ with gauge action of Diffeo ${ }_{1}$:

$$
\psi:(x, y, u) \rightarrow(x, y, \psi(u))
$$

Theorem

The field of rational differential invariants of the gauge group Diffeo $_{1}$ action is generated by the following invariant of the first order $U=\frac{u_{0,1}}{u_{1,0}}$ and its total derivatives $U_{i, j}=\frac{d^{i+j} U}{d x^{i} d y^{j}}$.

- Remark, that the restriction of the ratio U on a function $f(x, y)$ defines a vector field $\partial_{y}-U \partial_{x}$ that is tangent to the foliation $f(x, y)=$ const $_{i}$, and, therefore, also defines the foliation.
- Thus, we have another representation of ordered d - webs as a collection of functions

$$
\left(x, y, \frac{f_{3, y}}{f_{3, x}}, \ldots, \frac{f_{d, y}}{f_{d, x}}\right)
$$

Tresse derivatives

- Given two functions p and q on the jet space $J \cdot(\pi)$, such that

$$
\widehat{d} p \wedge \widehat{d} q \neq 0
$$

Tresse derivatives

- Given two functions p and q on the jet space $J \cdot(\pi)$, such that

$$
\widehat{d} p \wedge \widehat{d} q \neq 0
$$

- Then, for any other function f on the same jet space, we define Tresse derivatives $\frac{d f}{d p}, \frac{d f}{d q}$ from the following equality: $\widehat{d} f=\frac{d f}{d p} \widehat{d} p+\frac{d f}{d q} \widehat{d} q$.

Tresse derivatives

- Given two functions p and q on the jet space $J(\pi)$, such that

$$
\widehat{d} p \wedge \widehat{d} q \neq 0
$$

- Then, for any other function f on the same jet space, we define Tresse derivatives $\frac{d f}{d p}, \frac{d f}{d q}$ from the following equality: $\widehat{d} f=\frac{d f}{d p} \widehat{d} p+\frac{d f}{d q} \widehat{d} q$.
- It is easy to check that

$$
\frac{d}{d p}=\frac{1}{\Delta_{p q}}\left(q_{10} \frac{d}{d x_{2}}-q_{01} \frac{d}{d x_{1}}\right), \frac{d}{d q}=\frac{1}{\Delta_{p q}}\left(p_{10} \frac{d}{d x_{2}}-p_{01} \frac{d}{d x_{1}}\right)
$$

where $\Delta_{p q}=p_{01} q_{10}-p_{10} q_{01}$.

Tresse derivatives

- Given two functions p and q on the jet space $J(\pi)$, such that

$$
\widehat{d} p \wedge \widehat{d} q \neq 0
$$

- Then, for any other function f on the same jet space, we define Tresse derivatives $\frac{d f}{d p}, \frac{d f}{d q}$ from the following equality: $\widehat{d} f=\frac{d f}{d p} \widehat{d} p+\frac{d f}{d q} \widehat{d} q$.
- It is easy to check that

$$
\frac{d}{d p}=\frac{1}{\Delta_{p q}}\left(q_{10} \frac{d}{d x_{2}}-q_{01} \frac{d}{d x_{1}}\right), \frac{d}{d q}=\frac{1}{\Delta_{p q}}\left(p_{10} \frac{d}{d x_{2}}-p_{01} \frac{d}{d x_{1}}\right)
$$

where $\Delta_{p q}=p_{01} q_{10}-p_{10} q_{01}$.

- In particular, we have

$$
\frac{d}{d x}=\frac{d}{d u^{i}}, \frac{d}{d x}=\frac{d}{d u^{j}}
$$

in the above theorem.

- The last representation k-th components as ratios $\frac{d u^{k}}{d u^{j}} / \frac{d u^{k}}{d u^{i}}$ gives us the trivial Diffeo $_{1}^{d-2}$ action on the last $(d-2)$ components and the only action, we have now, is the action Diffeo ${ }_{1}^{2}$ on the first two components $(x, y) \rightarrow(X(x), Y(y))$, and, the induced by it, the action on the last $(d-2)$ components.
- The last representation k-th components as ratios $\frac{d u^{k}}{d u^{j}} / \frac{d u^{k}}{d u^{i}}$ gives us the trivial Diffeo $_{1}^{d-2}$ action on the last $(d-2)$ components and the only action, we have now, is the action Diffeo ${ }_{1}^{2}$ on the first two components $(x, y) \rightarrow(X(x), Y(y))$, and, the induced by it, the action on the last $(d-2)$ components.
- The Lie algebra of the gauge action consists of vector fields of the form

$$
Z=X(x) \partial_{x}+Y(y) \partial_{y}
$$

where $X(x)$ and $Y(y)$ are smooth functions.

- The last representation k-th components as ratios $\frac{d u^{k}}{d u^{j}} / \frac{d u^{k}}{d u^{i}}$ gives us the trivial Diffeo $_{1}^{d-2}$ action on the last $(d-2)$ components and the only action, we have now, is the action Diffeo ${ }_{1}^{2}$ on the first two components $(x, y) \rightarrow(X(x), Y(y))$, and, the induced by it, the action on the last $(d-2)$ components.
- The Lie algebra of the gauge action consists of vector fields of the form

$$
Z=X(x) \partial_{x}+Y(y) \partial_{y}
$$

where $X(x)$ and $Y(y)$ are smooth functions.

- Let Z_{1} is the first prolongation the vector field Z into the first jet space $J^{1}\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\right)$. We have

$$
Z_{1}=X(x) \partial_{x}+Y(y) \partial_{y}+\left(X^{\prime}-Y^{\prime}\right)\left(u_{1,0} \partial_{u_{1,0}}+u_{1,0} \partial_{u_{1,0}}\right)
$$

and

$$
Z_{1}\left(\frac{u_{0,1}}{u_{1,0}}\right)=\left(X^{\prime}-Y^{\prime}\right)\left(\frac{u_{0,1}}{u_{1,0}}\right)
$$

Gauge group action

- We have the bundle $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}, \pi\left(x, y, u^{3}, \ldots, u^{d-2}\right) \rightarrow(x, y)$, and any d-web $w=W_{d}\left(x, y, f_{3} . ., f_{d}\right)$ defines a section S_{w} of the bundle, where

$$
S_{w}:(x, y) \rightarrow\left(x, y, \frac{f_{3, y}}{f_{3, x}}, \ldots, \frac{f_{d, y}}{f_{d, x}}\right)
$$

Gauge group action

- We have the bundle $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2}, \pi\left(x, y, u^{3}, \ldots, u^{d-2}\right) \rightarrow(x, y)$, and any d-web $w=W_{d}\left(x, y, f_{3} . ., f_{d}\right)$ defines a section S_{w} of the bundle, where

$$
S_{w}:(x, y) \rightarrow\left(x, y, \frac{f_{3, y}}{f_{3, x}}, \ldots, \frac{f_{d, y}}{f_{d, x}}\right)
$$

- As we have seen vectors fields, that generate the Lie algebra of the gauge pseudogroup, are point vector fields on $\mathbf{J}^{0}(\pi)=\mathbb{R}^{d}$, having the form:

$$
\begin{equation*}
\mathcal{Z}(X, Y)=X(x) \partial_{x}+Y(y) \partial_{y}+\left(X^{\prime}-Y^{\prime}\right) \sum_{i=3}^{d} u^{i} \partial_{u^{i}} \tag{3}
\end{equation*}
$$

Gauge vector fields

- Let $\mathcal{Z}_{k}(X, Y)$ be the k -th prolongations of the vector fields $\mathcal{Z}(X, Y)$ into the k -jet bundle π_{k}.

Gauge vector fields

- Let $\mathcal{Z}_{k}(X, Y)$ be the k-th prolongations of the vector fields $\mathcal{Z}(X, Y)$ into the k-jet bundle π_{k}.
- The gauge action is transitive on the base manifold \mathbb{R}^{2}, and therefore these invariants are completely defined by thier restrictions on a fibre π_{k} at a point.

Gauge vector fields

- Let $\mathcal{Z}_{k}(X, Y)$ be the k-th prolongations of the vector fields $\mathcal{Z}(X, Y)$ into the k-jet bundle π_{k}.
- The gauge action is transitive on the base manifold \mathbb{R}^{2}, and therefore these invariants are completely defined by thier restrictions on a fibre π_{k} at a point.
- Take the fibre $\mathbf{J}_{0}^{k}=\pi_{k}^{-1}(0)$ an consider the gauge action on this fibre, that gives by vector fields $\mathcal{Z}_{k}(X, Y)$, where $X(0)=0, Y(0)=0$.

Gauge vector fields

- Let $\mathcal{Z}_{k}(X, Y)$ be the k-th prolongations of the vector fields $\mathcal{Z}(X, Y)$ into the k-jet bundle π_{k}.
- The gauge action is transitive on the base manifold \mathbb{R}^{2}, and therefore these invariants are completely defined by thier restrictions on a fibre π_{k} at a point.
- Take the fibre $\mathbf{J}_{0}^{k}=\pi_{k}^{-1}(0)$ an consider the gauge action on this fibre, that gives by vector fields $\mathcal{Z}_{k}(X, Y)$, where $X(0)=0, Y(0)=0$.
- We represent such vector fields $\mathcal{Z}_{k}(X, Y)$ in the form

$$
\mathcal{Z}_{k}(X, Y)=\mathcal{Z}_{k}(X)+\mathcal{Z}_{k}(Y)
$$

where $\mathcal{Z}_{k}(X), \mathcal{Z}_{k}(Y)$ are k-th prolongations of the vector fields

$$
\mathcal{Z}(X)=X(x) \partial_{x}+X^{\prime} \sum_{i=3}^{d}\left(u^{i} \partial_{u^{i}}\right), \mathcal{Z}(Y)=Y(y) \partial_{y}-Y^{\prime} \sum_{i=3}^{d}\left(u^{i} \partial_{u^{i}}\right)
$$

Gauge Lie algebra

- To descrive the gauge actions on the fibres \mathbf{J}_{0}^{k}, we remark that they generate two nilpotent Lie algebras of vector fields on \mathbf{J}_{0}^{k} :

$$
\begin{aligned}
\mathcal{L}_{1}^{k} & =\left\langle\xi_{1}=\mathcal{Z}_{k}(x), \ldots, \xi_{k+1}=\mathcal{Z}_{k}\left(x^{k+1}\right)\right\rangle \\
\mathcal{L}_{2}^{k} & =\left\langle\theta_{1}=\mathcal{Z}_{k}(y), \ldots, \theta_{k+1}=\mathcal{Z}_{k}\left(y^{k+1}\right)\right\rangle
\end{aligned}
$$

Gauge Lie algebra

- To descrive the gauge actions on the fibres \mathbf{J}_{0}^{k}, we remark that they generate two nilpotent Lie algebras of vector fields on \mathbf{J}_{0}^{k} :

$$
\begin{aligned}
\mathcal{L}_{1}^{k} & =\left\langle\xi_{1}=\mathcal{Z}_{k}(x), \ldots, \xi_{k+1}=\mathcal{Z}_{k}\left(x^{k+1}\right)\right\rangle \\
\mathcal{L}_{2}^{k} & =\left\langle\theta_{1}=\mathcal{Z}_{k}(y), \ldots, \theta_{k+1}=\mathcal{Z}_{k}\left(y^{k+1}\right)\right\rangle
\end{aligned}
$$

- with the following commutation relations

$$
\begin{aligned}
& {\left[\xi_{i}, \xi_{j}\right]=(j-i) \xi_{i+j-1}, \text { if } i+j-1 \leq k+1, \text { and } 0 \text { otherwise, }} \\
& {\left[\theta_{i}, \theta_{j}\right]=(j-i) \theta_{i+j-1} \text {, if } i+j-1 \leq k+1 \text {, and } 0 \text { otherwise, }} \\
& {\left[\xi_{i}, \theta_{j}\right]=0, \text { for all } i, j .}
\end{aligned}
$$

Theorem

The k-th prolongations $\mathcal{Z}_{k}(X, Y)$ of the vector fields $\mathcal{Z}(X, Y)$ have the following form:

$$
\begin{equation*}
\mathcal{Z}_{k}(X, Y)=X(x) \partial_{x}+Y(y) \partial_{y}+\sum_{i=1}^{k+1} X^{(i)} \frac{\xi_{i}}{i!}+\sum_{j=1}^{k+1} Y^{(j)} \frac{\theta_{j}}{j!} . \tag{4}
\end{equation*}
$$

Theorem

There are $v_{0}=d-3$ independent natural differential invariants of zero order for ordered planar d-webs, and

$$
\begin{equation*}
v_{k}=(d-2) \frac{(k+1)(k+2)}{2}-2(k+1) \tag{5}
\end{equation*}
$$

independent natural differential invariants of orders less or equal k, when $k \geq 1$.

Corollary

The Hilbert function HF for the field of rational invariants of planar d-webs equals $H F(k)=N_{k}-N_{k-1}$, that is, the number of independent invariants of exact order k,

$$
\begin{align*}
H F(k) & =(k+1)(d-2)-2, \text { for } k>1 \tag{6}\\
H F(1) & =2 d-7, H F(0)=d-3
\end{align*}
$$

Important remark

The Lie-Tresse theorem states that the field of all rational differential invariants of the planar webs is an algebraic diffiety with charts that organized as algebraic differential equations.
That is, they do have two independent ("basic") invariants, say b_{1}, b_{2}, some number of ("dependent") invariants, say a_{1}, \ldots, a_{m}, and all other invariants are just rational functions of these invariants and theirTresse derivatives $\frac{d^{k} a_{i}}{d^{j} b_{1} d^{k-j} b_{2}}$.
There are also relations (syzygies) between them. Thus, taking their restriction on a planar web, we'll get some algebraic differential equations.

Planar 3-webs

The above theorems show that, in the case $d=3$, we have the first non-trivial invariants in the order $k=3$.
Namely, we have
(1) Two independent invariants, say q, p, in the order $k=3$, that generate all invariants in order ≤ 3.
(2) Three independent invariants, say w_{1}, w_{2}, w_{3}, in the order $k=4$, and these 5 invariants generate all invariants in order ≤ 4.
(3) Four independent invariants in the exact order $k=5$, and these 9 invariants generate all invariants in order ≤ 5.

Taking Tresse derivatives

$$
\frac{d w_{i}}{d q}, \frac{d w_{i}}{d p}, i=1,2,3 ;
$$

we get 6 invariants in order $k=5$.
Therefore, there are two relations of the form:
$\sum_{i=1}^{3}\left(A_{i}\left(w_{1}, w_{2}, w_{3}, q, p\right) \frac{d w_{i}}{d q}+B_{i}\left(w_{1}, w_{2}, w_{3}, q, p\right) \frac{d w_{i}}{d p}\right)$
$+C\left(w_{1}, w_{2}, w_{3}, q, p\right)=0$
with rational coefficients A_{i}, B_{i}, C.

$$
\begin{align*}
& q=\frac{\left(u_{0,0}^{2} u_{1,2}-3 u_{0,0} u_{0,1} u_{1,1}-u_{0,0} u_{0,2} u_{1,0}+3 u_{0,1}^{2} u_{1,0}\right)^{2}}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{3} u_{0,0}}, \tag{7}\\
& p=\frac{\left(u_{0,0}^{2} u_{2,1}-u_{0,0} u_{0,1} u_{2,0}-u_{0,0} u_{1,0} u_{1,1}+u_{0,1} u_{1,0}^{2}\right)^{2} u_{0,0}}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{3}},
\end{align*}
$$

$$
\begin{aligned}
w_{1}= & \frac{\left(u_{3,1} u_{0,0}^{3}+\left(-u_{0,1} u_{3,0}-2 u_{1,1} u_{2,0}\right) u_{0,0}^{2}+\left(2 u_{0,1} u_{1,0} u_{2,0}+u_{1,0}^{2} u_{1,1}\right)\right.}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{2}} \\
w_{2}= & \frac{u_{2,2} u_{0,0}^{3}+\left(-3 u_{0,1} u_{2,1}-u_{0,2} u_{2,0}-u_{1,0} u_{1,2}\right) u_{0,0}^{2}+\left(3 u_{0,1}^{2} u_{2,0}+3 u_{0,1}\right.}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{2}} \\
& -3 \frac{u_{1,0}^{2} u_{0,1}^{2}}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{2}}, \\
w_{3}= & \frac{u_{0,0}^{2} u_{1,3}+\left(-6 u_{0,1} u_{1,2}-4 u_{0,2} u_{1,1}-u_{0,3} u_{1,0}\right) u_{0,0}+\left(15 u_{0,1}^{2} u_{1,1}+10\right.}{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{2}} \\
& -15 \frac{u_{1,0} u_{0,1}^{3}}{u_{0,0}\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right)^{2}},
\end{aligned}
$$

Invariants of 3 -webs

Theorem

The field of rational differential invariants of ordered planar three webs is generated by two of the 3-rd order invariants q, p, three of the 4-rd order invariants w_{1}, w_{2}, w_{3} and their Tresse derivatives

$$
\frac{d^{k+l} w_{i}}{d q^{k} d p^{\prime}}
$$

We say that a planar 3-web is regular if invariants q, p are in general position, or if the restriction 2-form $\widehat{d} q \wedge \widehat{d} p$ on the web surface is a volume form in the domain of consideration.

Example

The following 3-web $W_{3}=\{x, y, x y\}$ is singular.

3-web syzygy equation

- The Tresse derivatives $w_{i, j} \frac{d w_{i}}{d q_{j}}$ are linear in the fifth order derivatives $u_{i, 5-i}$ and do not contain $u_{0,5}, u_{5,0}$. Thus we look for the syzygies in the form:

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j=1}^{2} A_{i j} w_{i, j}+A_{0}=0 \tag{9}
\end{equation*}
$$

3-web syzygy equation

- The Tresse derivatives $w_{i, j} \frac{d w_{i}}{d q_{j}}$ are linear in the fifth order derivatives $u_{i, 5-i}$ and do not contain $u_{0,5}, u_{5,0}$. Thus we look for the syzygies in the form:

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j=1}^{2} A_{i j} w_{i, j}+A_{0}=0 \tag{9}
\end{equation*}
$$

- We get

$$
\begin{align*}
& A_{11}^{1}=-\frac{\left(3 q_{1}^{2}-2 w_{3}\right)\left(3 q_{2}^{2}-2 w_{1}\right)}{9 q_{2}^{4}-12 q_{2}^{2} w_{1}+4 w_{1}^{2}} \tag{10}\\
& A_{12}^{1}=-\frac{9 q_{2}^{3} q_{1}-6 q_{2}^{2} w_{2}-6 q_{2} q_{1} w_{1}+6 q_{2}^{2}+4 w_{1} w_{2}-4 w_{1}}{9 q_{2}^{4}-12 q_{2}^{2} w_{1}+4 w_{1}^{2}},(\tag{11}\\
& A_{21}^{1}=\frac{9 q_{2}^{3} q_{1}-6 q_{2}^{2} w_{2}-6 q_{2} q_{1} w_{1}+18 q_{2}^{2}+4 w_{1} w_{2}-12 w_{1}}{9 q_{2}^{4}-12 q_{2}^{2} w_{1}+4 w_{1}^{2}} \tag{12}\\
& A_{31}^{1}=0, A_{32}^{1}=0, A_{22}^{1}=1 \tag{13}
\end{align*}
$$

Two differential syzygies

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j=1}^{2} A_{i j}^{1} w_{i, j}=\frac{\left(4 w_{2}+2\right) q_{2}-4 q_{1} w_{1}}{3 q_{2}^{2}-2 w_{1}} \tag{17}
\end{equation*}
$$

$\sum_{i=1}^{3} \sum_{j=1}^{2} A_{i j}^{2} w_{i, j}=$

$$
\frac{12 q_{2}^{3} w_{3}+60 q_{1} q_{2}^{2}+\left(\left(-12 q_{1}^{2}-8 w_{3}\right) w_{1}-8 w_{2}^{2}+4 w_{2}+\right.}{\left(3 q_{2}^{2}-2 w_{1}\right)^{2}}
$$

Theorem

The field of rational differential invariants of regular ordered planar three webs is generated by two of the 3-rd order invariants q, p, three of the 4-rd order invariants w_{1}, w_{2}, w_{3} and their Tresse derivatives $\frac{d^{k+1} w_{i}}{d q^{k}} \frac{d p^{1}}{}$. There are two differential syzygies and all other syzygies are the Tresse derivatives of them.

4-webs

- In the case of 4 -webs, we have $d=4$, and

$$
\begin{align*}
& H F(0)=1, H F(1)=1 \tag{19}\\
& \operatorname{HF}(k)=2 k, k \geq 2
\end{align*}
$$

Thus, we have

4-webs

- In the case of 4 -webs, we have $d=4$, and

$$
\begin{align*}
H F(0) & =1, H F(1)=1 \tag{19}\\
\operatorname{HF}(k) & =2 k, k \geq 2
\end{align*}
$$

Thus, we have

- Two independent invariants, say p, q, in the order $k \leq 1$, that generate all invariants in order ≤ 1.

4-webs

- In the case of 4 -webs, we have $d=4$, and

$$
\begin{align*}
H F(0) & =1, H F(1)=1 \tag{19}\\
H F(k) & =2 k, k \geq 2
\end{align*}
$$

Thus, we have

- Two independent invariants, say p, q, in the order $k \leq 1$, that generate all invariants in order ≤ 1.
- Four independent invariants, say $w_{1}, w_{2}, w_{3}, w_{4}$ in the pure order $k=2$, and all these 6 invariants together with Tresse derivatives $\frac{d^{k} w_{i}}{d q^{j} d p^{k-j}}$ generate all invariants in the domains, where $\widehat{d} p \wedge \widehat{d} q \neq 0$.

4-webs

- In the case of 4 -webs, we have $d=4$, and

$$
\begin{align*}
H F(0) & =1, H F(1)=1 \tag{19}\\
H F(k) & =2 k, k \geq 2
\end{align*}
$$

Thus, we have

- Two independent invariants, say p, q, in the order $k \leq 1$, that generate all invariants in order ≤ 1.
- Four independent invariants, say $w_{1}, w_{2}, w_{3}, w_{4}$ in the pure order $k=2$, and all these 6 invariants together with Tresse derivatives $\frac{d^{k} w_{i}}{d q^{j} d p^{k-j}}$ generate all invariants in the domains, where $\widehat{d} p \wedge \widehat{d} q \neq 0$.
- In order $k=3$, we have $H F(3)=6$ independent invariants of pure order 3 and eight Tresse derivatives $\frac{d w_{i}}{d q}, \frac{d w_{i}}{d p}$. Therefore, in this case, we have two syzygies of the first order and they generate all others.

Summarizing, we get the following

Theorem

The field of rational differential invariants of ordered planar four webs is generated by two invariants q, p, of order zero and one respectively, by four invariants of the 2-rd order $w_{1}, w_{2}, w_{3}, w_{4}$ and their Tresse derivatives $\frac{d^{k+1} w_{i}}{d q_{1}^{k} d q_{2}^{l}}$. There are two differential syzygies of the first order, and all other syzygies are the Tresse derivatives of these.

Similar to the case of 3 webs we have

Theorem

The field of rational differential invariants of ordered planar four webs is generated by invariants:

$$
\begin{align*}
q & =\frac{v_{0,0}}{u_{0,0}}, p=\frac{u_{0,0} v_{0,1}-u_{0,1} v_{0,0}}{u_{0,0}\left(u_{0,0} v_{1,0}-u_{1,0} v_{0,0}\right)}, \tag{20}\\
w_{1} & =\frac{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right) u_{0,0}}{\left(u_{0,0} v_{1,0}-u_{1,0} v_{0,0}\right)^{2}}, \\
w_{2} & =\frac{\left(u_{0,0}^{2} v_{2,0}-u_{0,0} u_{1,0} v_{1,0}-u_{0,0} u_{2,0} v_{0,0}+u_{1,0}^{2} v_{0,0}\right) u_{0,0}}{\left(u_{0,0} v_{1,0}-u_{1,0} v_{0,0}\right)^{2}}, \\
w_{3} & =\frac{u_{0,0}^{2} v_{1,1}-u_{0,0} u_{0,1} v_{1,0}-u_{1,0} v_{0,1} u_{0,0}+u_{0,1} u_{1,0} v_{0,0}}{\left(u_{0,0} v_{1,0}-u_{1,0} v_{0,0}\right)^{2}}, \\
w_{4} & =\frac{u_{0,0}^{2} v_{0,2}-3 u_{0,1} v_{0,1} u_{0,0}-u_{0,0} u_{0,2} v_{0,0}+3 v_{0,0} u_{0,1}^{2}}{u_{0,0}\left(u_{0,0} v_{1,0}-u_{1,0} v_{0,0}\right)^{2}},
\end{align*}
$$

Theorem

The syzygies in the field of rational differential invariants of ordered planar four webs is generated by two syzygies

$$
\begin{array}{r}
q w_{1 . q}+p w_{2, q}--\left(\left(q w_{1}-w_{3}\right) p+w_{4}\right) w_{2, p}+w_{3, q}-\left(w_{3, p}-q w_{1, p}\right)(- \\
q\left(w_{2} p^{2}+\left(2 q w_{1}-2 w_{3}\right) p+w_{4}\right) w_{1, q}+p\left(\left(q w_{1}-w_{3}\right) p+w_{4}\right) w_{2,1}+((q \\
-\left(w_{2} p^{2}+\left(2 q w_{1}-2 w_{3}\right) p+w_{4}\right) w_{3, q}+w_{4, q}-\left(p w_{2}+q w_{1}-1\right. \\
\left(-2 q^{2} w_{1}^{2}+\left(4 q w_{3}+2 p\right) w_{1}+2 w_{2} w_{4}-2 w_{3}^{2}\right)\left(p w_{2}+q w_{1}\right.
\end{array}
$$

of the first order and their Tresse derivatives.

5-webs

- We have

$$
\begin{align*}
& H F(0)=2, H F(1)=3 \tag{23}\\
& H F(k)=3 k+1, k \geq 2
\end{align*}
$$

Thus, we expect

5-webs

- We have

$$
\begin{align*}
& H F(0)=2, H F(1)=3 \tag{23}\\
& H F(k)=3 k+1, k \geq 2
\end{align*}
$$

Thus, we expect

- Two independent invariants, say p, q, in the order $k=0$, that generate all invariants in order 0

5-webs

- We have

$$
\begin{align*}
& H F(0)=2, H F(1)=3 \tag{23}\\
& H F(k)=3 k+1, k \geq 2
\end{align*}
$$

Thus, we expect

- Two independent invariants, say p, q, in the order $k=0$, that generate all invariants in order 0
- Three independent invariants, say s_{1}, s_{2}, s_{3} in the pure order $k=1$.

5-webs

- We have

$$
\begin{align*}
& H F(0)=2, H F(1)=3 \tag{23}\\
& H F(k)=3 k+1, k \geq 2
\end{align*}
$$

Thus, we expect

- Two independent invariants, say p, q, in the order $k=0$, that generate all invariants in order 0
- Three independent invariants, say s_{1}, s_{2}, s_{3} in the pure order $k=1$.
- We have $H F(2)=7$ independent invariants of pure order 2 and 6 Tresse derivatives $\frac{d s_{i}}{d q}, \frac{d s_{i}}{d p}$. Therefore, in this case, we have one more invariant order 2 ,say r.

5-webs

- We have

$$
\begin{align*}
& H F(0)=2, H F(1)=3 \tag{23}\\
& H F(k)=3 k+1, k \geq 2
\end{align*}
$$

Thus, we expect

- Two independent invariants, say p, q, in the order $k=0$, that generate all invariants in order 0
- Three independent invariants, say s_{1}, s_{2}, s_{3} in the pure order $k=1$.
- We have $\operatorname{HF}(2)=7$ independent invariants of pure order 2 and 6 Tresse derivatives $\frac{d s_{i}}{d q}, \frac{d s_{i}}{d p}$. Therefore, in this case, we have one more invariant order 2,say r.
- In order $k=3$, we have $\operatorname{HF}(3)=10$ independent invariants of pure order 3. Nine of them we get as the Tresse derivatives $\frac{d^{2} s_{i}}{d q^{2}}, \frac{d^{2} s_{i}}{d p^{2}}, \frac{d^{2} s_{i}}{d q d p}$ and two invariants as derivatives $\frac{d r}{d q}, \frac{d r}{d p}$. Therefore, we get a syzygy in this order.

Theorem

The field of rational differential invariants of ordered planar 5-webs is generated by two invariants q, p, of order zero, by three invariants of the first order s_{1}, s_{2}, s_{3}, one invariant r of order two their their Tresse derivatives $\frac{d^{k+1} s_{i}}{d q_{1}^{k} d q_{2}^{\top}}, \frac{d^{k+1} r_{r}}{d q_{1}^{k} d q_{2}^{T}}$. In order 3 there is one differential syzygy, and all other syzygies are the Tresse derivatives of it.

Theorem

The field of rational differential invariants of ordered planar 5-webs is generated by two invariants q, p, of order zero,

$$
\begin{equation*}
q=\frac{v_{0,0}}{u_{0,0}}, p=\frac{w_{0,0}}{u_{0,0}} \tag{24}
\end{equation*}
$$

by three invariants of the first order s_{1}, s_{2}, s_{3},

$$
\begin{align*}
s_{1} & =\frac{u_{0,0} v_{0,1}-u_{0,1} v_{0,0}}{u_{0,0}\left(u_{0,0} v_{1,0}-v_{0,0} u_{1,0}\right)}, s_{2}=\frac{u_{0,0} w_{1,0}-w_{0,0} u_{1,0}}{u_{0,0} v_{1,0}-v_{0,0} u_{1,0}} \tag{25}\\
s_{3} & =\frac{u_{0,0} w_{0,1}-u_{0,1} w_{0,0}}{u_{0,0}\left(u_{0,0} v_{1,0}-v_{0,0} u_{1,0}\right)}
\end{align*}
$$

and one invariant r of order two

$$
\begin{equation*}
r=\frac{\left(u_{0,0} u_{1,1}-u_{0,1} u_{1,0}\right) u_{0,0}}{\left(u_{0,0} v_{1,0}-v_{0,0} u_{1,0}\right)^{2}} \tag{26}
\end{equation*}
$$

In order 3 there is one differential syzygy, and all other syzygies are the

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping:

$$
\begin{aligned}
& \phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)= \\
& \left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)
\end{aligned}
$$

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping: $\phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)=$ $\left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)$.
- We say that the web \mathcal{W} is regular if $\widehat{d} p \wedge \widehat{d} p \neq 0$, on \mathcal{W}, or when $p(\mathcal{W})$ and $q(\mathcal{W})$ are coordinates in the domain under consideration.

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping: $\phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)=$ $\left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)$.
- We say that the web \mathcal{W} is regular if $\widehat{d} p \wedge \widehat{d} p \neq 0$, on \mathcal{W}, or when $p(\mathcal{W})$ and $q(\mathcal{W})$ are coordinates in the domain under consideration.
- The mapping $\phi_{\mathcal{W}}$ is an embedding for regular webs and its image $\Sigma_{\mathcal{W}} \subset \mathbb{R}^{m} \times \mathbb{R}^{2}$ we call the normal form (or model) of the web \mathcal{W}.

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping: $\phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)=$ $\left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)$.
- We say that the web \mathcal{W} is regular if $\widehat{d} p \wedge \widehat{d} p \neq 0$, on \mathcal{W}, or when $p(\mathcal{W})$ and $q(\mathcal{W})$ are coordinates in the domain under consideration.
- The mapping $\phi_{\mathcal{W}}$ is an embedding for regular webs and its image $\Sigma_{\mathcal{W}} \subset \mathbb{R}^{m} \times \mathbb{R}^{2}$ we call the normal form (or model) of the web \mathcal{W}.
- 3-webs.

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping: $\phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)=$ $\left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)$.
- We say that the web \mathcal{W} is regular if $\widehat{d} p \wedge \widehat{d} p \neq 0$, on \mathcal{W}, or when $p(\mathcal{W})$ and $q(\mathcal{W})$ are coordinates in the domain under consideration.
- The mapping $\phi_{\mathcal{W}}$ is an embedding for regular webs and its image $\Sigma_{\mathcal{W}} \subset \mathbb{R}^{m} \times \mathbb{R}^{2}$ we call the normal form (or model) of the web \mathcal{W}.
- 3-webs.
- 4-webs.

Models

- The fields of rational differential and natural invariants of planar webs organized (due to Lie-Tresse theorem) in the following way: we have two basic invariants, say p, q, and some additional invariants, say w_{1}, \ldots, w_{m}, such that all other invariants are rational functions of $p, q, w_{1}, \ldots, w_{m}$, and the Tresse derivatives $\frac{d w_{i}}{d p}, \frac{d w_{i}}{d q}$, subjected to some relations.
- We consider the space $\mathbb{R}^{m} \times \mathbb{R}^{2}$ with coordinates $\left(W_{1}, \ldots, W_{m}, P, Q\right)$. Then web \mathcal{W} defines the following mapping: $\phi_{\mathcal{W}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{2}, \phi_{\mathcal{W}}(x, y)=$ $\left(W_{1}=w_{1}(\mathcal{W}), \ldots, W_{m}=w_{m}(\mathcal{W}), P=p(\mathcal{W}), Q=q(\mathcal{W})\right)$.
- We say that the web \mathcal{W} is regular if $\widehat{d} p \wedge \widehat{d} p \neq 0$, on \mathcal{W}, or when $p(\mathcal{W})$ and $q(\mathcal{W})$ are coordinates in the domain under consideration.
- The mapping $\phi_{\mathcal{W}}$ is an embedding for regular webs and its image $\Sigma_{\mathcal{W}} \subset \mathbb{R}^{m} \times \mathbb{R}^{2}$ we call the normal form (or model) of the web \mathcal{W}.
- 3-webs.
- 4-webs.
- 5-webs

Webs equivalence

Theorem

Two regular ordered webs \mathcal{W}_{1} and \mathcal{W}_{2} are equivalent in the domains of consideration if and only if their models coincide.

