VERONESE WEBS AND NONLINEAR PDEs Joint work with Boris Kruglikov

Workshop on Integrable Nonlinear Equations

Mikulov, Czech Republic, October 18-24, 2015

Andriy Panasyuk

Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Olsztyn, Poland
\&
Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics Lviv, Ukraine

2 Introduction

$f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
$A f_{x} f_{y z}+B f_{y} f_{x z}+C f_{z} f_{x y}=0, A+B+C=0-$ dispersionless Hirota equation (or (A, B, C)-equation)
$f_{x z}-f_{y y}+f_{y} f_{x x}-f_{x} f_{x y}=0$ - hyper-CR equation
Aim of the talk: to discuss underlying geometric structures and introduce three more equations
$(\beta(y)-\gamma(z)) f_{x} f_{y z}+(\gamma(z)-\alpha(x)) f_{y} f_{x z}+(\alpha(x)-\beta(y)) f_{z} f_{x y}=0$ (Type I)
$f_{x} f_{z x}-f_{z} f_{x x}+f_{y} f_{x y}-f_{x} f_{y y}=0$ (Type II)
$f_{x} f_{z x}-f_{z} f_{x x}+(\beta(y)-\gamma(z))\left(f_{x} f_{y z}-f_{y} f_{x z}\right)+\beta^{\prime}(y) f_{x} f_{z}=0$
(Type III)

1. Veronese webs and Einstein-Weyl structures
2. Dual description and partial Nijenhuis (1,1)-tensors
3. "Usual" Hirota equation
4. "Unusual" Hirota equations I, II, and III
5. Associated Einstein-Weyl structures
6. Contact and Bäcklund transformations

4 Veronese webs

Definition

$$
\left\{\mathcal{F}_{\lambda}\right\}_{\lambda \in \mathbb{P}^{1}=\mathbb{K} \cup\{\infty\}} ;
$$

here \mathcal{F}_{λ} is a foliation of codimension 1 on M^{n+1} such that

$$
\forall x \in M \exists \text { a local coframe }\left(\alpha_{0}, \ldots, \alpha_{n}\right), \alpha_{i} \in \Gamma\left(T^{*} M\right)
$$

with

$$
\left(T \mathcal{F}_{\lambda}\right)^{\perp}=\left\langle\alpha_{0}+\lambda \alpha_{1}+\cdots+\lambda^{n} \alpha_{n}\right\rangle .
$$

near x.

5 Motivation: bihamiltonian structures and classical webs
Poisson str. of const rank $\xrightarrow{\text { Darboux }}$ th $\frac{\partial}{\partial p_{1}} \wedge \frac{\partial}{\partial q_{1}}+\cdots+\frac{\partial}{\partial p_{k}} \wedge \frac{\partial}{\partial q_{k}}$
Pair of compatible Poisson structures of const rank \longrightarrow ???
Idea of Gelfand and Zakharevich:
Pair of compatible Poisson structures of const rank \longrightarrow 1-param. family of foliations

Classical webs

6 Einstein-Weyl structures

Weyl structures: torsion free connections D adapted to conformal classes of metrics [g], given by g and 1-form ω such that $D g=g \otimes \omega$.

Einstein-Weyl structures: W. str. whose symmetrised Ricci tensor is proportional to some metric $g \in[g]$

Einstein-Weyl structures in (2+1)-dim: \longleftrightarrow existence of 2-dim family $\left\{\mathcal{G}_{\gamma}\right\}_{\gamma \in \Gamma}$ of null totally geodesic hypersurfaces

Einstein-Weyl structures of hyper-CR type: E-W. str. in $(2+1)$-dim with 「 fibered over P^{1}

Theorem of Dunajski-Kryński:
Veronese webs in $\operatorname{dim} 3 \stackrel{1: 1}{\longleftrightarrow} \mathrm{E}-\mathrm{W}$ str. of hyper-CR type

7 Partial Nijenhuis operators

Definition

A $P N O$ on a manifold M is a pair (\mathcal{F}, N), where \mathcal{F} is a foliation on M and $N: T \mathcal{F} \rightarrow T M$ is a partial (1,1)-tensor such that $\forall X, Y \in \Gamma(T \mathcal{F})$

- $[X, Y]_{N}:=[N X, Y]+[X, N Y]-N[X, Y] \in \Gamma(T \mathcal{F}) ;$
- $T_{N}(X, Y):=[N X, N Y]-N[X, Y]_{N}=0$.

Example
Let $N: T M \rightarrow T M$ be a Nijenhuis $(1,1)$-tensor, i.e. $T_{N} \equiv 0$. Then (M, N) is a PNO.

8 Partial Nijenhuis operators: Lemma 1

Lemma
Let (\mathcal{F}, N) be a PNO on M. Then

- $\left(\mathcal{F}, N_{\lambda}\right)$ is a PNO; here $N_{\lambda}:=N-\lambda I, I: T \mathcal{F} \hookrightarrow T M$ a canonical inclusion
- $[X, Y]_{N_{\lambda}}$ is a Lie bracket on $\Gamma(T \mathcal{F})$
- $N_{\lambda}: \Gamma(T \mathcal{F}) \rightarrow \Gamma(T M)$ is a homomorphism of Lie algebras.

In particular, if $N_{\lambda}(T \mathcal{F}) \subset T M$ is a distribution, it is integrable:

$$
N_{\lambda}(T \mathcal{F})=T \mathcal{F}_{\lambda}
$$

9 Partial Nijenhuis operators: Lemma 2

Lemma

Let $N: T M \rightarrow$ TM be a Nijenhuis (1,1)-tensor, i.e. $T_{N} \equiv 0$, and let \mathcal{F} be a foliation. Assume

- $\forall x \in M: N_{x} \mid T_{x} \mathcal{F}: T_{x} \mathcal{F} \rightarrow T_{x} M$ is an isomorphism onto the image
- $N(T \mathcal{F}) \subset T M$ is an integrable distribution.

Then $\left(\mathcal{F},\left.N\right|_{T \mathcal{F}}\right)$ is a PNO.
Remark Given a partial Nijenhuis operator (\mathcal{F}, N), there can exist different Nijenhuis (1,1)-tensors \widetilde{N} such that $\left.\widetilde{N}\right|_{T \mathcal{F}}=N$.

10 Veronese webs: dual description

Theorem

There exists a 1-1-correspondence between Veronese webs $\left\{\mathcal{F}_{\lambda}\right\}$ on M^{n+1} and PNOs (\mathcal{F}, N) such that the pair of operators (N, I),
I:TF $\hookrightarrow T M$, has a unique Kronecker block in the Jordan-Kronecker decomposition, i.e. exist local frames $v_{1}, \ldots, v_{n} \in \Gamma(T \mathcal{F}), w_{0}, \ldots, w_{n} \in \Gamma(T M)$ in which

$$
N=\left[\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0 \\
& & & 1
\end{array}\right], I=\left[\begin{array}{cccc}
1 & & & \\
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{array}\right]
$$

11 Proof of the theorem

$(\Longleftarrow)(\mathcal{F}, N) \mapsto N_{\lambda}(T \mathcal{F})=T \mathcal{F}_{\lambda}$ (use Lemma 1)
(\Longrightarrow) Variation of a construction of F.J. Turiel:
Let $\left\{\mathcal{F}_{\lambda}\right\}$ be a Veronese web on M^{n+1} ($=M^{3}$ for simplicity).
Fix $\lambda_{1}, \lambda_{2}, \lambda_{3}$ pairwise distinct nonzero. Then

$$
D_{1}=T \mathcal{F}_{\lambda_{2}} \cap T \mathcal{F}_{\lambda_{3}}, D_{2}=T \mathcal{F}_{\lambda_{3}} \cap T \mathcal{F}_{\lambda_{1}}, D_{3}=T \mathcal{F}_{\lambda_{1}} \cap T \mathcal{F}_{\lambda_{2}}
$$

are 1-dimensional distributions such that $D_{i}+D_{j}$ are integrable 2-dimensional distributions (for instance $D_{1}+D_{2}=T \mathcal{F}_{\lambda_{3}}$ etc.). Hence there exists a local coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ such that $D_{i}=\left\langle\partial_{x_{i}}\right\rangle$. Put

$$
N \partial_{x_{i}}=\lambda_{i} \partial_{x_{i}} .
$$

Then $T_{N} \equiv 0$ and $\left(\mathcal{F}_{\infty},\left.N\right|_{T \mathcal{F}_{\infty}}\right)$ is a PNO. Indeed $N\left(T \mathcal{F}_{\infty}\right)=T \mathcal{F}_{0}$ is integrable (use Lemma 2). Finally, $N_{\lambda_{i}}\left(T \mathcal{F}_{\infty}\right)=T \mathcal{F}_{\lambda_{i}}, i=1,2,3$ and by the uniqueness property of the Veronese curve $N_{\lambda}\left(T \mathcal{F}_{\infty}\right)=\mathcal{F}_{\lambda}$.

12 The Hirota equation

Variation of a construction of I. Zakharevich:
Consider $\mathbb{R}^{3}\left(x_{1}, x_{2}, x_{3}\right), \lambda_{1}, \lambda_{2}, \lambda_{3}$ pairwise distinct nonzero numbers. Construct a Nijenhuis (1,1)-tensor $N: T \mathbb{R}^{3} \rightarrow T \mathbb{R}^{3}$ by

$$
N \partial_{x_{i}}=\lambda_{i} \partial_{x_{i}}
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be nondegenerate $\left(f_{x_{i}} \neq 0\right)$. Put $\mathcal{F}_{\infty}: T \mathcal{F}_{\infty}:=\langle d f\rangle^{\perp}$. Then

$$
\left(N\left(T \mathcal{F}_{\infty}\right)\right)^{\perp}=\left\langle\frac{1}{\lambda_{1}} f_{x_{1}} d x_{1}+\frac{1}{\lambda_{2}} f_{x_{2}} d x_{2}+\frac{1}{\lambda_{3}} f_{x_{3}} d x_{3}\right\rangle=:\langle\omega\rangle
$$

$N\left(T \mathcal{F}_{\infty}\right)$ is integrable $\Longleftrightarrow d \omega \wedge \omega=0 \Longleftrightarrow$

$$
\frac{1}{\lambda_{1}}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{3}}\right) f_{x_{1}} f_{x_{2} x_{3}}+\frac{1}{\lambda_{2}}\left(\frac{1}{\lambda_{3}}-\frac{1}{\lambda_{1}}\right) f_{x_{2}} f_{x_{3} x_{1}}+\frac{1}{\lambda_{3}}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) f_{x_{3}} f_{x_{1} x_{2}}=0
$$

Theorem
There is a 1-1-correspondence between Veronese webs $\left\{\mathcal{F}_{\lambda}\right\}$ with $\mathcal{F}_{\lambda_{i}}=\left\{d x_{i}=0\right\}, \mathcal{F}_{\infty}=\{d f=0\}$ and the solutions of the Hirota $\left(\lambda_{2}-\lambda_{3}, \lambda_{3}-\lambda_{1}, \lambda_{1}-\lambda_{2}\right)$-equation.

13 Another version of the underlying nonlinear equation (I) Consider $\mathbb{R}^{3}\left(x_{1}, x_{2}, x_{3}\right)$, fix $p \in \mathbb{R}^{3}$ and $\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right), \phi_{3}\left(x_{3}\right)$ any functions which have pairwise distinct nonzero values at p. Construct a Nijenhuis (1,1)-tensor $N: T \mathbb{R}^{3} \rightarrow T \mathbb{R}^{3}$ by

$$
N \partial_{x_{i}}=\phi_{i}\left(x_{i}\right) \partial_{x_{i}} .
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be nondegenerate $\left(f_{x_{i}} \neq 0\right)$ around p. Put $\mathcal{F}_{\infty}: T \mathcal{F}_{\infty}:=\langle d f\rangle^{\perp}$. Then

$$
\left(N\left(T \mathcal{F}_{\infty}\right)\right)^{\perp}=\left\langle\frac{1}{\phi_{1}} f_{x_{1}} d x_{1}+\frac{1}{\phi_{2}} f_{x_{2}} d x_{2}+\frac{1}{\phi_{3}} f_{x_{3}} d x_{3}\right\rangle=:\langle\omega\rangle .
$$

$N\left(T \mathcal{F}_{\infty}\right)$ is integrable $\Longleftrightarrow d \omega \wedge \omega=0 \Longleftrightarrow$

$$
\frac{1}{\phi_{1}}\left(\frac{1}{\phi_{2}}-\frac{1}{\phi_{3}}\right) f_{x_{1}} f_{x_{2} x_{3}}+\frac{1}{\phi_{2}}\left(\frac{1}{\phi_{3}}-\frac{1}{\phi_{1}}\right) f_{x_{2}} f_{x_{3} x_{1}}+\frac{1}{\phi_{3}}\left(\frac{1}{\phi_{1}}-\frac{1}{\phi_{2}}\right) f_{x_{3}} f_{x_{1} x_{2}}=0
$$

$$
\left(\phi_{2}-\phi_{3}\right) f_{x_{1}} f_{x_{2} x_{3}}+\left(\phi_{3}-\phi_{1}\right) f_{x_{2}} f_{x_{3} x_{1}}+\left(\phi_{1}-\phi_{2}\right) f_{x_{3}} f_{x_{1} x_{2}}=0 .
$$

14 Another version of the underlying nonlinear equation

Consider $\mathbb{R}^{3}\left(x_{1}, x_{2}, x_{3}\right)$, fix $a \in \mathbb{R}$. Construct a Nijenhuis (1,1)-tensor $N: T \mathbb{R}^{3} \rightarrow T \mathbb{R}^{3}$ by

$$
\begin{equation*}
N \partial_{x_{1}}=a \partial_{x_{1}}, N \partial_{x_{2}}=\partial_{x_{1}}+a \partial_{x_{2}}, N \partial_{x_{3}}=\partial_{x_{2}}+a \partial_{x_{3}} \tag{1}
\end{equation*}
$$

(the Jordan 3×3-block with a constant eigenvalue a). Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be nondegenerate. Put $\mathcal{F}_{\infty}:\left(T \mathcal{F}_{\infty}\right)^{\perp}:=\langle d f\rangle$. Then

$$
\begin{aligned}
&\left(N\left(T \mathcal{F}_{\infty}\right)\right)^{\perp}=\left\langle\left(N^{*}\right)^{-1} d f\right\rangle=\left\langle f_{x_{1}}\left(d x_{1}-\frac{1}{a} d x_{2}+\frac{1}{a^{2}} d x_{3}\right)+\right. \\
&\left.f_{x_{2}}\left(d x_{2}-\frac{1}{a} d x_{3}\right)+f_{x_{3}} d x_{3}\right\rangle \quad=:\langle\omega\rangle .
\end{aligned}
$$

$N\left(T \mathcal{F}_{\infty}\right)$ is integrable $\Longleftrightarrow d \omega \wedge \omega=0 \Longleftrightarrow$

$$
f_{x_{1}} f_{x_{3} x_{1}}-f_{x_{3}} f_{x_{1} x_{1}}+f_{x_{2}} f_{x_{1} x_{2}}-f_{x_{1}} f_{x_{2} x_{2}}=0
$$

15 Yet another version of the underlying nonlinear equation (III)

Consider $\mathbb{R}^{3}\left(x_{1}, x_{2}, x_{3}\right)$, fix $p \in \mathbb{R}^{3}$ and $a\left(x_{2}\right), b\left(x_{3}\right)$ any functions which have distinct nonzero values at p. Construct a Nijenhuis (1,1)-tensor $N: T \mathbb{R}^{3} \rightarrow T \mathbb{R}^{3}$ by

$$
N \partial_{x_{1}}=a\left(x_{2}\right) \partial_{x_{1}}, N \partial_{x_{2}}=a\left(x_{2}\right) \partial_{x_{2}}+\partial_{x_{1}}, N \partial_{x_{3}}=b\left(x_{3}\right) \partial_{x_{3}}
$$

(the Jordan 2×2-block with the eigenvalue a and a 1×1-block with the eigenvalue b). Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be nondegenerate. Put $\mathcal{F}_{\infty}:\left(T \mathcal{F}_{\infty}\right)^{\perp}:=\langle d f\rangle$. Then
$\left(N\left(T \mathcal{F}_{\infty}\right)\right)^{\perp}=\left\langle\left(N^{*}\right)^{-1} d f\right\rangle=\left\langle f_{x_{1}}\left(\frac{1}{a\left(x_{2}\right)} d x_{1}-\frac{1}{a\left(x_{2}\right)^{2}} d x_{2}\right)+\right.$

$$
\left.f_{x_{2}}\left(\frac{1}{a\left(x_{2}\right)} d x_{2}\right)+f_{x_{3}} \frac{1}{b\left(x_{3}\right)} d x_{3}\right\rangle=:\langle\omega\rangle .
$$

$N\left(T \mathcal{F}_{\infty}\right)$ is integrable $\Longleftrightarrow d \omega \wedge \omega=0 \Longleftrightarrow$
$f_{x_{1}} f_{x_{3} x_{1}}-f_{x_{3}} f_{x_{1} x_{1}}+\left(a\left(x_{2}\right)-b\left(x_{3}\right)\right)\left(f_{x_{1}} f_{x_{2} x_{3}}-f_{x_{2}} f_{x_{1} x_{3}}\right)+a^{\prime}\left(x_{2}\right) f_{x_{1}} f_{x_{3}}=0$

16 Contact symmetries (type I)

Theorem

The contact symmetry algebra of equation of type I with constant ϕ_{i} is generated by the point symmetries $g_{1}(x) \partial_{x_{1}}+g_{2}\left(x_{2}\right) \partial_{x_{2}}+$ $g_{3}\left(x_{3}\right) \partial_{x_{3}}+g_{4}(f) \partial_{u}$ with arbitrary functions $g_{1}, g_{2}, g_{3}, g_{4}$ of one argument, i.e. the corresponding Lie pseudogroup is generated by the transformations

$$
x_{i} \mapsto X_{i}\left(x_{i}\right), f \mapsto F(f)
$$

The contact symmetry algebra of equation of type I with variable ϕ_{i} is generated by the point symmetries $c_{1} \cdot\left(\frac{\partial_{x_{1}}}{\phi_{1}^{\prime}\left(x_{1}\right)}+\frac{\partial_{x_{2}}}{\phi_{2}^{\prime}\left(x_{2}\right)}+\right.$ $\left.\frac{\partial_{x_{3}}}{\phi_{3}^{\prime}\left(x_{3}\right)}\right)+c_{2} \cdot\left(\frac{\phi_{1}\left(x_{1}\right) \partial_{x_{1}}}{\phi_{1}^{\prime}\left(x_{1}\right)}+\frac{\phi_{2}\left(x_{2}\right) \partial_{x_{2}}}{\phi_{2}^{\prime}\left(x_{2}\right)}+\frac{\phi_{3}\left(x_{3}\right) \partial_{x_{3}}}{\phi_{3}^{\prime}\left(x_{3}\right)}\right)+f(u) \partial_{u}$ with arbitrary two constants c_{1}, c_{2} and one function f of one argument.
The structures of these two Lie algebras are quite different: 1) $\left.\bigoplus_{n=1}^{4} \operatorname{Vect}(\mathbb{R}) ; 2\right)$ the direct sum of the Lie algebra $\operatorname{Vect}(\mathbb{R})$ with a solvable non-Abelian 2D algebra.

17 Einstein-Weyl structures and Lax pair (type I)

Theorem

1. The following Weyl structure on a 3D-space with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$, parametrized by one function $f=f\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{array}{r}
g=\frac{\left(\phi_{2}-\phi_{3}\right)^{2} f_{x_{1}}}{f_{x_{2}} f_{x_{3}}} d x_{1}^{2}+\frac{2\left(\phi_{1}-\phi_{3}\right)\left(\phi_{2}-\phi_{3}\right)}{f_{x_{3}}} d x_{1} d x_{2}+c . p . \\
\omega=\left(\left(\frac{1}{\phi_{1}-\phi_{2}}+\frac{1}{\phi_{1}-\phi_{3}}\right) \phi_{1}^{\prime}-\left(\frac{1}{\phi_{1}-\phi_{2}} \frac{f_{x_{1}}}{f_{x_{2}}}\right) \phi_{2}^{\prime}\right. \\
\left.-\left(\frac{1}{\phi_{1}-\phi_{3}} \frac{f_{x_{1}}}{f_{x_{3}}}\right) \phi_{3}^{\prime}-\frac{f_{x_{1} x_{1}}}{f_{x_{1}}}\right) d x_{1}+\text { c.p. }
\end{array}
$$

is Einstein-Weyl iff the function f satisfies equation of type I.
2. Lax pair for equation of type I:
$v^{\lambda}:=f_{x_{2}}\left(\phi_{1}-\lambda\right) \frac{\partial}{\partial x_{1}}-f_{x_{1}}\left(\phi_{2}-\lambda\right) \frac{\partial}{\partial x_{2}}$,
$w^{\lambda}:=f_{x_{3}}\left(\phi_{2}-\lambda\right) \frac{\partial}{\partial x_{2}}-f_{x_{2}}\left(\phi_{3}-\lambda\right) \frac{\partial}{\partial x_{3}}$

18 Realization theorem

Veronese curve for the equation of type I : $\left(\phi_{2}-\lambda\right)\left(\phi_{3}-\lambda\right) f_{x_{1}} d x_{1}+\left(\phi_{3}-\lambda\right)\left(\phi_{1}-\lambda\right) f_{x_{2}} d x_{2}+\left(\phi_{1}-\lambda\right)\left(\phi_{2}-\lambda\right) f_{x_{3}} d x_{3}$ Definition
Let \mathcal{F}_{λ} be a Veronese web, $\boldsymbol{T \mathcal { F } _ { \lambda }}=\left\langle\alpha_{0}+\lambda \alpha_{1}+\cdots+\lambda^{n} \alpha_{n}\right\rangle^{\perp}$. A smooth function $\phi: M \rightarrow \mathbb{R}$ is called self-propelled if $\alpha_{0}+\phi \alpha_{1}+\cdots+\phi^{n} \alpha_{n} \sim d \phi$, where \sim means proportionality up to multiplication by a nonvanishing function.

Lemma

Let \mathcal{F}_{λ} be a Veronese web in \mathbb{R}^{3} defined by $\left(T \mathcal{F}_{\lambda}\right)^{\perp}=$ $\left\langle\alpha_{0}+\lambda \alpha_{1}+\lambda^{2} \alpha_{2}\right\rangle$. Then locally there exist three functionally independent self-propelled functions $\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)$.
The relation $\alpha_{0}+\phi \alpha_{1}+\phi^{2} \alpha_{2} \sim d \phi$ is equivalent to the following system of first order nonlinear PDEs:

$$
\begin{equation*}
\phi X_{0} \phi=X_{1} \phi, \phi X_{1} \phi=X_{2} \phi, \tag{2}
\end{equation*}
$$

where X_{0}, X_{1}, X_{2} is the frame dual to the coframe $\alpha_{0}, \alpha_{1}, \alpha_{2}$.

19 Realization theorem

Theorem
Let a Veronese web \mathcal{F}_{λ} in \mathbb{R}^{3} be given, let $\phi_{1}, \phi_{2}, \phi_{3}$ be independent self-propelled functions for it, and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be such that $\mathcal{F}_{\infty}=\{f=$ const $\}$. Then f is a solution of equation (Type I), where x_{i} is an invertible function of ϕ_{i}.
Proof

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \mapsto\left[\begin{array}{ccc}
0 & 0 & \phi_{1} \phi_{2} \phi_{3} \\
1 & 0 & -\phi_{1} \phi_{2}-\phi_{1} \phi_{3}-\phi_{2} \phi_{3} \\
0 & 1 & \phi_{1}+\phi_{2}+\phi_{3}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
\phi_{1} & 0 & 0 \\
0 & \phi_{2} & 0 \\
0 & 0 & \phi_{3}
\end{array}\right]
$$

20 Realization theorem \mapsto Bäcklund transformations

Example $\left[X_{0}, X_{1}\right]=X_{0},\left[X_{1}, X_{2}\right]=X_{2},\left[X_{0}, X_{2}\right]=2 X_{1} \mapsto$ nonflat Veronese web $\alpha_{0}+\lambda \alpha_{1}+\lambda^{2} \alpha_{2}$. Realize X_{i} as left-invariant vector fields on $S L(2)$:
$x_{0}=-y \frac{\partial}{\partial x}-\frac{y z+1}{x} \frac{\partial}{\partial z}, X_{1}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right), X_{2}=x \frac{\partial}{\partial y}$,
where $\left[\begin{array}{cc}x & y \\ z & \frac{y z+1}{x}\end{array}\right] \in S L(2)$. Let $F(x, y, z, \lambda)$ be the function such that $\mathcal{F}_{\lambda}=\{F(x, y, z, \lambda)=$ const $\}$.
Then the formula $F(x, y, z, \phi(x, y, z))=c$ gives implicitly a 1-parametric family of self-propelled functions.

21 Realization theorem \mapsto Bäcklund transformations

Explicitly

$$
\begin{gathered}
F(x, y, z, \lambda)=\frac{\lambda y z+x z+\lambda}{(\lambda y+x) x} \mapsto \\
\phi_{1}=\frac{-x}{y}, \phi_{2}=\frac{-x z}{y z+1}, \phi_{3}=\frac{x^{2}-x z}{y z+1-x y}
\end{gathered}
$$

The function $F(x, y, z, \infty)=(y z+1) / y x$ "cutting" the foliation \mathcal{F}_{∞} can be expressed as

$$
\frac{\phi_{1}-\phi_{3}}{\phi_{2}-\phi_{3}}
$$

which gives a particular solution of the equation of type I

$$
\left(\phi_{2}-\phi_{3}\right) f_{\phi_{1}} f_{\phi_{2} \phi_{3}}+\left(\phi_{3}-\phi_{1}\right) f_{\phi_{2}} f_{\phi_{3} \phi_{1}}+\left(\phi_{1}-\phi_{2}\right) f_{\phi_{3}} f_{\phi_{1} \phi_{2}}=0 .
$$

22 Finally

For equations of type II and III we also have:

- Contact symmetry algebras
- Formulae for Einstein-Weyl structures
- Realization theorems
- Bäcklund transformations between equations of type I, II, and III

22 Finally

For equations of type II and III we also have:

- Contact symmetry algebras
- Formulae for Einstein-Weyl structures
- Realization theorems
- Bäcklund transformations between equations of type I, II, and III

Lacking (?): Bäcklund transformations between equations of type I, II, III and hyper-CR

22 Finally

For equations of type II and III we also have:

- Contact symmetry algebras
- Formulae for Einstein-Weyl structures
- Realization theorems
- Bäcklund transformations between equations of type I, II, and III

Lacking (?): Bäcklund transformations between equations of type I, II, III and hyper-CR

Many thanks for your attention!

