VERONESE WEBS AND NONLINEAR PDEs

Joint work with Boris Kruglikov

[
Workshop on Integrable Nonlinear Equations

Mikulov, Czech Republic, October 18-24, 2015

Andriy Panasyuk

Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Olsztyn, Poland
&
Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics
Lviv, Ukraine



2

Introduction
fR R

Aft,, + Bf,f, + Cf,f,, = 0,A+ B+ C = 0 — dispersionless Hirota
equation (or (A, B, C)-equation)

fxz — fyy + fyfix — fxfy = 0 — hyper-CR equation

Aim of the talk: to discuss underlying geometric structures and
introduce three more equations

(B(y) = v(2))fckyz + (v(2) — a(x))fy iz + (a(x) — B(y))fzfy =0
(Type 1)

fufox — ffo + f;/fxy - &fyy =0 (Type ”)

fifox = fefoc + (B(y) = 7(2))(Efyz = £ fe) + B'(y)fe = 0
(Type 1)



3 Plan

Veronese webs and Einstein—Weyl structures

Dual description and partial Nijenhuis (1,1)-tensors
“Usual” Hirota equation

“Unusual” Hirota equations I, I, and Il

Associated Einstein—Weyl structures

o ke N

. Contact and Backlund transformations



Veronese webs

Definition
{Fxhepr=ku{oc}:
here F) is a foliation of codimension 1 on M"*! such that
Vx € M 3 a local coframe («o, ..., a,),a; € T[(T*M)

with
(T]:,\)J' = (ap + Aag + - + ANay).

near X.



5 Motivation: bihamiltonian structures and classical webs

. Darboux th 8 8 8 8
Poisson str. of const rank — — oor Mo Tt am N e

Pair of compatible Poisson structures of const rank — 777

Idea of Gelfand and Zakharevich:

Pair of compatible Poisson structures of const rank — 1-param.
family of foliations

Classical webs




6 Einstein-Weyl structures

Weyl structures: torsion free connections D adapted to conformal
classes of metrics [g], given by g and 1-form w such that
Dg =g ®w.

Einstein—Weyl structures: W. str. whose symmetrised Ricci tensor
is proportional to some metric g € [g]

Einstein-Weyl structures in (2+1)-dim: <— existence of 2-dim
family {G, } er of null totally geodesic hypersurfaces

Einstein—Weyl structures of hyper-CR type: E-W. str. in
(2+1)-dim with T fibered over P!

Theorem of Dunajski—Kryriski:

Veronese webs in dim 3 <1 E-W str. of hyper-CR type



7 Partial Nijenhuis operators

Definition
A PNO on a manifold M is a pair (F, N), where F is a foliation
on Mand N: TF — TM is a partial (1,1)-tensor such that
VX,Y e[(TF)

» [X,Y]n = [NX, Y]+ [X,NY] = N[X,Y] € T(TF);

» Tn(X,Y) :=[NX,NY] - N[X, Y]y =0.

Example
Let N: TM — TM be a Nijenhuis (1,1)-tensor, i.e. Ty =0.
Then (M, N) is a PNO.



8 Partial Nijenhuis operators: Lemma 1

Lemma
Let (F,N) be a PNO on M. Then

> (F,Ny) isa PNO; here N\ :=N—X, | : TF — TM a
canonical inclusion

» [X,Y]n, is a Lie bracket on T(TF)

» Ny:T[(TF)—T(TM) is a homomorphism of Lie algebras.

In particular, if Nx(TF) C TM is a distribution, it is integrable:

NA(TF) = TFa.



9 Partial Nijenhuis operators: Lemma 2

Lemma
Let N: TM — TM be a Nijenhuis (1,1)-tensor, i.e. Ty =0, and
let F be a foliation. Assume
» V' x e M: Ny|r,7: TxF — TxM is an isomorphism onto the
image
» N(TF) C TM is an integrable distribution.

Then (F,N|71F£) is a PNO.

Remark Given a partial Nijenhuis operator (F, N), there can exist
different Nijenhuis (1,1)-tensors N such that N|7r = N.



10 Veronese webs: dual description

Theorem

There exists a 1-1-correspondence between Veronese webs {Fy} on
M™+1 and PNOs (F, N) such that the pair of operators (N, 1),

| . TF < TM, has a unique Kronecker block in the
Jordan—Kronecker decomposition, i.e. exist local frames

Viy.o oy Vo €ET(TF),wp,...,w, € T(TM) in which

0 1 i
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Proof of the theorem

(<=) (F,N) = NA\(TF) = TF) (use Lemma 1)

(=) Variation of a construction of F.J. Turiel:

Let {F)} be a Veronese web on M1 (=M3 for simplicity).
Fix A1, A2, A3 pairwise distinct nonzero. Then

D, = T.F,\2 N T.FA3, D, = Tf,\3 N T}-)q, D; = T.F)\l N TJ_")\Z

are 1-dimensional distributions such that D; + D; are integrable
2-dimensional distributions (for instance D; + Dy = TF), etc.).
Hence there exists a local coordinate system (xi, x2, x3) such that
D; = <6X,.>. Put

NOy, = N\iOy,.

Then Ty =0 and (Foo, N|7£,) is @ PNO. Indeed

N(TFus) = TFy is integrable (use Lemma 2). Finally,
N),(TFx) = TFy,, i =1,2,3 and by the uniqueness property of
the Veronese curve Ny\(TF) = Fo.



12 The Hirota equation

Variation of a construction of |. Zakharevich:
Consider R3(x1, x2, x3), A1, A2, A3 pairwise distinct nonzero
numbers. Construct a Nijenhuis (1,1)-tensor N : TR® — TR3 by

NOy, = \idy.

Let f : R® — R be nondegenerate (£, # 0). Put
Foo : TFoo := (df)*. Then

1 1 1
(N(TFo))™ = (- fadt + oo + i daa) = (w).
1 2 3
N(TFx) is integrable <= dw Aw =0 <=
1.1 1 1.1 1 1.1 1
3\ fxﬁ(x 3\ 1 fxfxx 77_7&7()()(:
)\1()\2 )\3) 1 23+>\2()\3 )\1) 2 31+>\3()\1 )\2) 3 T X1X2 0

Theorem

There is a 1-1-correspondence between Veronese webs {F\} with
Fy, = {dx; =0}, Fx = {df =0} and the solutions of the Hirota
()\2 — A3, A3 — A, A — Ag)—equation.



13 Another version of the underlying nonlinear equation (I)

Consider R3(x1, x2, x3), fix p € R® and ¢1(x1), ¢2(x2), ¢3(x3) any
functions which have pairwise distinct nonzero values at p.
Construct a Nijenhuis (1,1)-tensor N : TR® — TR3 by

NOy. = ¢i(x;i)Ox-

Let f : R® — R be nondegenerate (f,. # 0) around p. Put
Foo i TFuoo := (df)*. Then

1 1 1
(N(TFuo))t = (—Fqdxs + —fi,dxo + —frydxs) =1 (w).
o1 0 ?3
N(TF) is integrable <= dw Aw =0 <=
1 1 1 1 1 1 1 1 1
(Y st (= ) s g+ (e — Vo Frry = O
9185y g3 Pl (=S ) babaxt (5= o b

—

(02 - (/53)fX1 fX2X3 + ((;53 - (/51)&2 f;(3X1 + (d)l - (752)&3 fX1X2 — 0



14 Another version of the underlying nonlinear equation

(1)

Consider R3(x1, x2, x3), fix a € R. Construct a Nijenhuis
(1,1)-tensor N : TR3 — TR3 by

NOy, = a0y, , NOy, = Oy, + a0x,, NOy; = Oy, + a0x, (1)

(the Jordan 3 x 3-block with a constant eigenvalue a). Let
f : R® — R be nondegenerate. Put Fop, : (T Foo)® := (df). Then

(N(T Fao))t = (N*)Ldf) = (F, (dxq — fde +3 dX3)+
fr, (dx2 — ng3) + fedxz) =1 (w).
N(TFu) is integrable <= dw Aw =0 <=

f;q fX3X1 - f;(3 f;qxl + sz fX1X2 - f;q f;<2><2 - 0



15  Yet another version of the underlying nonlinear
equation (1)
Consider R3(x1, x2, x3), fix p € R? and a(x2), b(x3) any functions

which have distinct nonzero values at p. Construct a Nijenhuis
(1,1)-tensor N : TR3 — TR3 by

NOy, = a(x2)0x,, NOx, = a(x2)0x, + Oxy, NOyy = b(x3)0ss

(the Jordan 2 x 2-block with the eigenvalue a and a 1 x 1-block
with the eigenvalue b). Let f : R® — R be nondegenerate. Put
Foo : (TFso)t := (df). Then

(N(TF))- = (N*)1df) — <fxl(a(i2)dx1 - a(jz)de2)+
1 1 _
fX2(a(X2)dX2) + &3de3> = (w>

N(TFu) is integrable <= dw Aw =0 <

fX1 fX3X1 - fX3 fX1X1 +(3(X2)* b(X3))(f;<1 fX2X3 - sz f;<1X3)+a/(X2)fX1 fXa =0



16 Contact symmetries (type |)

Theorem

The contact symmetry algebra of equation of type | with constant
¢; is generated by the point symmetries g1(x)0x, + g2(x2)0x, +
g3(x3)0x, + ga(f)0y with arbitrary functions g1, g, g3, 8a of one
argument, i.e. the corresponding Lie pseudogroup is generated by
the transformations

Xj — X,'(X,'), f— F(f)

The contact symmetry algebra of equation of type | with variable
¢; is generated by the point symmetries ci - (¢,8(X1) + ¢8X2 y

2(X2
7 (X3)) +c- (¢1(;/><(1)38)x1 4 ¢2¢£<(2)228)x2 + ¢3(X(3)8)><3) + f( )au with

arb/trary two constants cy, ¢, and one function f of one argument.

The structures of these two Lie algebras are quite different: 1)
@?*_, Vect(R); 2) the direct sum of the Lie algebra Vect(R) with a
solvable non-Abelian 2D algebra.



17  Einstein—-Weyl structures and Lax pair (type |)

Theorem
1. The following Weyl structure on a 3D-space with coordinates
(x1, %2, x3), parametrized by one function f = f(x1, x2, x3)

_ (92— $3) 2(¢p1 — ¢3)(P2 — ¢3)
fer s o + fes

Y ((¢>11¢2 * 1 icf?a)qs/l - <¢1 : ®2 fX2>¢2

_(¢1 1 o ;)qﬁg %jl)dxl + c.p.

dxydxz + c.p.

is Einstein-Weyl iff the function f satisfies equation of type |I.

2. Lax pair for equation of type I:

A= fo(dr — )aX1 — Fa(d2 — A)de
wh = &3(¢2 - A)axz - Xz(d)3 )8X3



18 Realization theorem
Veronese curve for the equation of type I:
(2= M) (P3—A) iy dxa+(d3—A) (1= N) iy o +(d1—A) (P2—A) i dx
Definition
Let F) be a Veronese web, TF\ = (ag + Aag + -+ + )\”Oz,,>J-. A
smooth function ¢ : M — R is called self-propelled if
ag + ¢pag + -+ + ¢"ap ~ d¢p, where ~ means proportionality up
to multiplication by a nonvanishing function.

Lemma

Let Fy be a Veronese web in R3 defined by (TF))* =

(g + A1 + N2ap). Then locally there exist three functionally
independent self-propelled functions ¢1(x), p2(x), 3(x).

The relation ag + ¢ay + ¢?an ~ d¢ is equivalent to the following
system of first order nonlinear PDEs:

PXop = X109, 9 X190 = X209, (2)

where Xy, X1, Xo is the frame dual to the coframe ag, oy, s.



19 Realization theorem

Theorem

Let a Veronese web Fy in R? be given, let ¢1, ¢3, ¢3 be
independent self-propelled functions for it, and let f : R® — R be
such that Fo, = {f = const}. Then f is a solution of equation
(Type 1), where x; is an invertible function of ¢;.

Proof

0 0 0 0 P10203 1 0 0
1 0| = |10 —¢1¢o—193—2g3 | —= | 0 ¢ 0
0 1 01 o1+ P2 + P3 0 0 o3



20 Realization theorem — Bicklund transformations

Example [Xo, Xl] = Xo, [Xl,Xg] = X, [XQ, Xz] = 2X; — nonflat
Veronese web ag + Aa; + MN2ap. Realize X; as left-invariant vector
fields on SL(2):

0 yz+190 1, 0 0 0 0
(X 7)Y Xy = x—
2(X8x y8y+zaz)’ 2 X@y’

where [ )z< yzyi ] € SL(2). Let F(x,y,z,\) be the function such

that F\ = {F(x,y,z, \) = const}.
Then the formula F(x,y, z, #(x, y, z)) = c gives implicitly a
1-parametric family of self-propelled functions.
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Realization theorem — Backlund transformations
Explicitly
A A
F(x,y,z,)\) = AyZ+Xxz+ A
(Ay + x)x

2

—X —XZ X- — XZ

R VR S R g

The function F(x,y,z,00) = (yz + 1)/yx “cutting” the foliation
Foo Can be expressed as
1 — ¢3

¢2 — ¢z’

which gives a particular solution of the equation of type |

(¢2 - ¢3)f¢>1 f¢2¢3 + (¢3 - ¢1)f¢2 f¢3¢1 + (¢1 - ¢2)f¢>3 f¢1¢z =0.



22 Finally

For equations of type Il and Il we also have:
» Contact symmetry algebras

» Formulae for Einstein—Weyl structures

v

Realization theorems

v

Bicklund transformations between equations of type I, I, and
[l



22 Finally

For equations of type Il and Il we also have:
» Contact symmetry algebras
» Formulae for Einstein—Weyl structures
» Realization theorems

» Backlund transformations between equations of type |, I, and
[l

Lacking (7): Backlund transformations between equations of type |,
[, Il and hyper-CR



22 Finally

For equations of type Il and Il we also have:
» Contact symmetry algebras
» Formulae for Einstein—Weyl structures
» Realization theorems

» Backlund transformations between equations of type |, I, and
[l

Lacking (7): Backlund transformations between equations of type |,
[, Il and hyper-CR

Many thanks for your attention!



