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Generic first Order PDEs
Consider a nonlinear mathematical model given in terms of a general
first order PDEs,

∆
(

x,u,u(1)
)

= 0,

where
1 x ∈ Rn denotes the set of independent variables,
2 u(x) ∈ Rm denotes the set of dependent variables,
3 u(1) denotes the set of first order partial derivatives of u w.r.t. x.

Quasilinear systems
In mathematical physics a special role is played by quasilinear first
order systems:

n∑
i=1

Ai(x,u)
∂u
∂xi
−B(x,u) = 0.
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Plan of the talk

1 Lie group theory framework:
1.1 Mapping of a nonhomogeneous and nonautonomous

quasilinear first order system to homogeneous and
autonomous form;

1.2 Mapping of a nonlinear first order system to
homogeneous and autonomous quasilinear form;

2 Decoupling problem of a general quasilinear first order system in
two independent variables through (locally) invertible point
transformations.
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Lie symmetries of DEs
1 Lie symmetries of DEs are important ingredients in the process of

finding solutions.
2 Lie symmetries of DEs can also be used to algorithmically

construct a mapping from a (SOURCE) DE to another (TARGET)
suitable DE.

Mappings between different DEs

Such a mapping (if it exists) needs not be a group transformation;
moreover, any symmetry admitted by the source DE has to be mapped
to a symmetry admitted by the target DE.

If the mapping is 1–1 then the mapping must establish a 1–1
correspondence between symmetries of source and target DEs: the
corresponding Lie algebras of infinitesimal generators have to be
isomorphic.
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Considered Mappings

Nonautonomous and Nonhomogeneous First Order Quasilinear
PDEs vs. Autonomous and Homogeneous First Order Quasilinear
PDEs [F. O., IJNLM, 2012] by means of

z = Z(x), w = W(x,u);

Nonlinear first order PDEs to autonomous and homogeneous
quasilinear first order PDEs [F. O., 2015] by means of

z = Z(x,u), w = W(x,u).
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Lemma

Given the system
n∑

i=1

Ai (x,u)
∂u
∂xi

= G (x,u) ,

an invertible mapping of the form

z = Z(x), w = W(x,u),

produces a system still in quasilinear form.

Proof.
Straightforward.
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Theorem [F. O., IJNLM–2012]
n∑

i=1

Ai (x,u)
∂u
∂xi

= B (x,u) ⇔
n∑

i=1

Âi (w)
∂w
∂zi

= 0

through an inverible point transformation,

z = Z(x), w = W(x,u),

if and only if it admits as subalgebra of its Lie point symmetries an (n + 1)–dimensional
Lie algebra spanned by

Ξi =
n∑

j=1

ξj
i (x)

∂

∂xj
+

m∑
A=1

ηA
i (x,u)

∂

∂uA
, (i, . . . , n + 1),

such that
[Ξi ,Ξj ] = 0, [Ξi ,Ξn+1] = Ξi , i, j = 1, . . . , n.

Furthermore, all minors of order n extracted from the (n + 1)× n matrix with entries ξj
i

(i = 1, . . . , n + 1, j = 1, . . . , n) must be non–vanishing, and the variables w, which by
constructions are invariants of Ξ1, . . . ,Ξn, must result invariant with respect to Ξn+1 too.
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Proof: Necessary condition
Every system of the form

n∑
i=1

Âi (w)
∂w
∂zi

= 0

is invariant w.r.t. the n translations and a uniform scaling of the zi :

Ξi =
∂

∂zi
(i = 1 . . . ,n), Ξn+1 =

n∑
i=1

zi
∂

∂zi
.

These vector fields span an (n + 1)–dimensional solvable Lie algebra,

[Ξi ,Ξn+1] = Ξi , i = 1, . . . ,n,

and the structure of the Lie algebra of point symmetries is not changed
by an invertible point transformation.
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Proof: Sufficient condition
Under the hypotheses of the theorem, using the operators Ξ1, . . . ,Ξn,
we may algorithmically construct a set of canonical variables z = Z(x),
w = W(x,u) such that

Ξi =
∂

∂zi
, i = 1, . . . ,n,

whereupon we get an autonomous system. As a result, since
[Ξi ,Ξn+1] = Ξi (i = 1, . . . ,n), and w are invariants for Ξn+1, it is

Ξn+1 =
n∑

i=1

zi
∂

∂zi
,

ensuring that the autonomous system is also homogeneous.
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Example: Rotating shallow water equations

ht + uhx + vhy + h(ux + vy ) = 0,
ut + uux + vuy + ghx = 2ωv ,
vt + uvx + vvy + ghy = −2ωu,

where h is the height of the fluid, (u, v) the components of its velocity, g
the gravitational constant, and ω the constant angular velocity of the
fluid around the x3–axis responsible for the Coriolis force.



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

9–dimensional Lie algebra of point symmetries

Ξ1 = ∂t , Ξ2 = ∂x1 , Ξ3 = ∂x2 ,

Ξ4 = x2∂x1 − x1∂x2 + v∂u − u∂v ,

Ξ5 = cos(2ωt)∂x1 − sin(2ωt)∂x2 − 2ω sin(2ωt)∂u − 2ω cos(2ωt)∂v ,

Ξ6 = sin(2ωt)∂x1 cos(2ωt)∂x2 + 2ω cos(2ωt)∂u − 2ω sin(2ωt)∂v ,

Ξ7 = x1∂x1 + x2∂x2 + u∂u + v∂v + 2h∂h,

Ξ8 = sin(2ωt)∂t + ω(x1 cos(2ωt) + x2 sin(2ωt))∂x1

+ ω(x2 cos(2ωt)− x1 sin(2ωt))∂x2

+ ω((2ωx2 − u) cos(2ωt) + (−2ωx1 + v) sin(2ωt)]∂u

− ω((2ωx1 + v) cos(2ωt) + (2ωx2 + u)) sin(2ωt))∂v

− 2ωh cos(2ωt)∂h,

Ξ9 = cos(2ωt)∂t + ω(x2 cos(2ωt)− x1 sin(2ωt))∂x1

− ω(x1 cos(2ωt) + x2 sin(2ωt))∂x2

− ω((2ωx1 − v) cos(2ωt) + (2ωx2 − u) sin(2ωt))∂u

− ω((2ωx2 + u) cos(2ωt)− (2ωx1 + v)) sin(2ωt))∂v

− 2ωh sin(2ωt)∂h.
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Thee 4–dimensional subalgebra spanned by the vector fields

Ξ̂1 = Ξ1 + ωΞ4 − Ξ9, Ξ̂2 = Ξ3 − Ξ6,

Ξ̂3 = −Ξ2 + Ξ5, Ξ̂4 =
1
2

(
Ξ7 −

1
ω

Ξ8

)
,

allows us to introduce

τ = − 1
2ω

cot(ωt), ξ =
1
2

(y − x cot(ωt)), η = −1
2

(x + y cot(ωt)),

U = −1
2

(u sin(2ωt)− v(1− cos(2ωt))− 2ωx),

V = −1
2

(u(1− cos(2ωt)) + v sin(2ωt))− 2ωy),

H =
1− cos(2ωt)

2
h,

whereupon we get
Uτ + UUξ + VUη + gHξ = 0,

Vτ + UVξ + VVη + gHη = 0,

Hτ + UHξ + VHη + H(Uξ + Vη) = 0.
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Example: Monatomic perfect gas in rotation and subject to gravity

∂ρ

∂t
+

3∑
k=1

∂(ρvk )

∂xk
= 0,

ρ

(
∂vi

∂t
+

3∑
k=1

vk
∂vi

∂xk

)
+

K
m
∂(ρθ)

∂xi
= ρ(F (e)

i + F (i)
i ), i = 1, 2, 3,

∂θ

∂t
+

3∑
k=1

vk
∂θ

∂xk
+

2
3
θ

3∑
k=1

∂vk

∂xk
= 0,

where ρ is the density, θ the temperature, v the velocity, F (i)
i the components of the

specific inertial forces, F (e)
i the components of the specific external forces acting on the

gas, K is the Boltzmann constant, m the mass of a single particle.

F (i)
i = 2εijlωlvj + ω2xi − (ωr xr )ωi , ω = (0, 0, ω), εijl Ricci tensor.

ρ(F(e) + F(i)) = (ρ(2ωv2 + ω2x1), ρ(−2ωv1 + ω2x2),−ρg).
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14 Lie point symmetries admitted

Ξ1 = ∂t , Ξ2 = ∂x3 , Ξ3 = x2∂x1 − x1∂x2 + v2∂v1 − v1∂v2 ,

Ξ4 = t∂x3 + ∂v3 , Ξ5 = ρ∂ρ,

Ξ6 = x1∂x1 + x2∂x2 +

(
x3 +

1
2

gt2
)
∂x3 + v1∂v1 + v2∂v2 + (v3 + gt)∂v3 + 2θ∂θ,

Ξ7 = t∂t + ωtx2∂x1 − ωtx1∂x2 − gt2∂x3 + (−v1 + ωtv2 + ωx2)∂v1

+ (−ωtv1 − v2 − ωx1)∂v2 + (−v3 − 2gt)∂v3 − 2θ∂θ,

Ξ8 = t2∂t + t(x1 + ωtx2)∂x1 − t(ωtx1 − x2)∂x2 −
1
2

t(gt2 − 2x3)∂x3 − 3ρt∂ρ

+ (−tv1 + ωt2v2 + x1 + 2ωtx2)∂v1 + (−ωt2v1 − tv2 − 2ωtx1 + x2)∂v2

+
1
2

(−3gt2 − 2tv3 + 2x3)∂v3 − 2tθ∂θ,

Ξ9 = cos(ωt)∂x1 − sin(ωt)∂x2 − ω sin(ωt)∂v1 − ω cos(ωt)∂v2 ,

Ξ10 = sin(ωt)∂x1 + cos(ωt)∂x2 + ω cos(ωt)∂v1 − ω sin(ωt)∂v2 ,
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. . . Symmetries

Ξ11 = −t cos(ωt)∂x1 + t sin(ωt)∂x2 + (− cos(ωt) + ωt sin(ωt))∂v1

+ (sin(ωt) + ωt cos(ωt))∂v2 ,

Ξ12 = t sin(ωt)∂x1 + t cos(ωt)∂x2 + (sin(ωt) + ωt cos(ωt))∂v1

+ (cos(ωt)− ω sin(ωt))∂v2 ,

Ξ13 = (−gt2 − 2x3) cos(ωt)∂x1 + (gt2 + 2x3) sin(ωt)∂x2 + 2(x1 cos(ωt)− x2 sin(ωt))∂x3

+ (−2gt cos(ωt)− 2v3 cos(ωt) + gωt2 sin(ωt) + 2ωx3 sin(ωt))∂v1

+ (gωt2 cos(ωt) + 2ωx3 cos(ωt) + 2gt sin(ωt) + 2v3 sin(ωt))∂v2

+ 2(v1 cos(ωt)− ωx2 cos(ωt)− v2 sin(ωt)− ωx1 sin(ωt))∂v3 ,

Ξ14 = (gt2 + 2x3) sin(ωt)∂x1 + (gt2 + 2x3) cos(ωt)∂x2 − 2(x2 cos(ωt) + x1 sin(ωt))∂x3

+ (gωt2 cos(ωt) + 2ωx3 cos(ωt) + 2gt sin(ωt) + 2v3 sin(ωt))∂v1

+ (2gt cos(ωt) + 2v3 cos(ωt)− gωt2 sin(ωt)− 2ωx3 sin(ωt))∂v2

+ 2(−v2 cos(ωt)− ωx1 cos(ωt)− v1 sin(ωt) + ωx2 sin(ωt))∂v3 .
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Reduction to homogeneous and autonomous form
By taking the 5–dimensional Lie subalgebra of Lie point symmetries spanned

Ξ̂1 = Ξ1 + ωΞ3 − gΞ4, Ξ̂2 = Ξ9,

Ξ̂3 = Ξ10, Ξ̂4 = Ξ2, Ξ̂5 = Ξ5 + Ξ7,

the non–zero commutators are
[
Ξ̂i , Ξ̂5

]
= Ξ̂i , i = 1, . . . , 4.

Construct the new independent (τ , ξ1, ξ2, ξ3) and dependent (R, V1, V2, V3, T ) variables

τ = t ,

ξ1 = x1 cos(ωt)− x2 sin(ωt),

ξ2 = x1 sin(ωt) + x2 cos(ωt),

ξ3 = x3 +
1
2

gt2,

R = ρ, T = θ,

V1 = ((v1 − ωx2) cos(ωt)− (v2 + ωx1) sin(ωt)),

V2 = ((v2 + ωx1) cos(ωt) + (v1 − ωx2) sin(ωt)),

V3 = v3 + gt .
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Reduction to homogeneous and autonomous form

Hence, the operators Ξ̂i (i = 1, . . . , 5) write as

∂τ , ∂ξ1 , ∂ξ2 , ∂ξ3 , τ∂τ + ξ1∂ξ1 + ξ2∂ξ2 + ξ3∂ξ3 ,

and the system reduces to homogeneous and autonomous form:

∂R
∂τ

+
3∑

k=1

∂(RVk )

∂ξk
= 0,

R

(
∂Vi

∂τ
+

3∑
k=1

Vk
∂Vi

∂ξk

)
+

K
m
∂(RT )

∂ξi
= 0, i = 1, 2, 3,

∂T
∂τ

+
3∑

k=1

Vk
∂T
∂ξk

+
2
3

T
3∑

k=1

∂Vk

∂ξk
= 0.
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General nonlinear systems
If we have a general first order nonlinear system of PDEs,

∆
(

x,u,u(1)
)

= 0

and we want to check if it is equivalent to a quasilinear homogeneous
and autonomous system, we may look for an invertible mapping like

z = Z(x,u), w = W(x,u).

If this is possible then the nonlinear system has to possess a suitable
(n + 1)–dimensional solvable Lie algebra as subalgebra of the algebra
of its Lie point symmetries.



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

General nonlinear systems
If we have a general first order nonlinear system of PDEs,

∆
(

x,u,u(1)
)

= 0

and we want to check if it is equivalent to a quasilinear homogeneous
and autonomous system, we may look for an invertible mapping like

z = Z(x,u), w = W(x,u).

If this is possible then the nonlinear system has to possess a suitable
(n + 1)–dimensional solvable Lie algebra as subalgebra of the algebra
of its Lie point symmetries.



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Theorem [F. O., 2015]
A necessary condition in order the nonlinear system

∆
(

x,u,u(1)
)

= 0

be transformed by the invertible map

z = Z(x,u), w = W(x,u)

into an autonomous and homogeneous first order quasilinear system is that it admits as
subalgebra of its Lie point symmetries an (n + 1)–dimensional Lie algebra spanned by

Ξi =
n∑

j=1

ξj
i (x,u)

∂

∂xj
+

m∑
A=1

ηA
i (x,u)

∂

∂uA
, (i, . . . , n + 1),

such that
[Ξi ,Ξj ] = 0, [Ξi ,Ξn+1] = Ξi , i, j = 1, . . . , n.

Furthermore, all minors of order n extracted from the (n + 1)× (n + m) matrix with
entries ξj

i and ηA
i must be non–vanishing, and the variables w, which by constructions

are invariants of Ξ1, . . . ,Ξn, must result invariant with respect to Ξn+1 too.
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Monge–Ampère equation in (1 + 1) dimensions

Consider the 2nd order Monge–Ampère equation (the most general
completely exceptional 2nd order equation [Boillat, 1968],

κ1

(
ux1x1ux2x2 − u2

x1x2

)
+ κ2ux1x1 + κ3ux1x2 + κ4ux2x2 + κ5 = 0,

where κi(x1, x2,u,ux1 ,ux2) (i = 1, . . . ,5); hereafter, we assume κ5 = 0
and κi (i = 1, . . . ,4) depending at most on first order derivatives. A
nonlinear first order system is obtained through the positions

ux1 = u1, ux2 = u2 :

∂u1

∂x2
− ∂u2

∂x1
= 0,

κ1(u1, u2)

(
∂u1

∂x1

∂u2

∂x2
−
(
∂u1

∂x2

)2
)

+ κ2(u1, u2)
∂u1

∂x1
+ κ3(u1, u2)

∂u1

∂x2
+ κ4(u1, u2)

∂u2

∂x2
= 0.
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Monge–Ampère equation

The nonlinear system equivalent to the Monge-Ampère equation admits
the Lie symmetries spanned by the operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
,

Ξ3 =

(
x1 −

∂f
∂u1

)
∂

∂x1
+

(
x2 −

∂f
∂u2

)
∂

∂x2
,

where f (u1,u2) is such that:

κ1 + κ4
∂2f
∂u2

1
− κ3

∂2f
∂u1∂u2

+ κ2
∂2f
∂u2

2
= 0.

It is:
[Ξ1,Ξ2] = 0, [Ξ1,Ξ3] = Ξ1, [Ξ2,Ξ3] = Ξ2.
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Mapping to a homogeneous and autonomous quasilinear system
By applying the theorem, we introduce

z1 = x1 −
∂f
∂u1

, z2 = x2 −
∂f
∂u2

, new indep. var.,

w1 = u1, w2 = u2 − x2, new dep. var.,

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 = z1

∂

∂z1
+ z2

∂

∂z2
;

as a result, the nonlinear system becomes:

∂w1

∂z2
− ∂w2

∂z1
= 0,

κ2(w1,w2)
∂w1

∂z1
+ κ3(w1,w2)

∂w1

∂z2
+ κ4(w1,w2)

∂w2

∂z2
= 0.
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Monge–Ampère equation in (2 + 1) dimensions

The most general 2nd order (hyperbolic) equation completely
exceptional in (2 + 1)dimensions [Ruggeri, 1973] is:

H = det

 ux1x1 ux1x2 ux1x3

ux1x2 ux2x2 ux2x3

ux1x3 ux2x3 ux3x3


κ1H + κ2

∂H
∂ux1x1

+ κ3
∂H
∂ux1x2

+ κ4
∂H
∂ux1x3

+ κ5
∂H
∂ux2x2

+ κ6
∂H
∂ux2x3

+ κ7
∂H
∂ux3x3

+ κ8ux1x1 + κ9ux1x2 + κ10ux1x3 + κ11ux2x2

+ κ12ux2x3 + κ13ux3x3 + κ14 = 0,

where κi(x1, x2, x3,u,ux1 ,ux2 ,ux3), i=1,. . . ,14; hereafter, we assume
κ14 = 0 and κi (i = 1, . . . ,13) depending at most on first order
derivatives.
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Monge–Ampère equation in (2 + 1) dimensions

A nonlinear first order system is obtained through the positions

u1 = ux1 , u2 = ux2 , u3 = ux3 :

∂u1

∂x2
− ∂u2

∂x1
= 0,

∂u1

∂x3
− ∂u3

∂x1
= 0,

∂u2

∂x3
− ∂u3

∂x2
= 0,

κ1H + κ2
∂H

∂(∂u1/∂x1)
+ κ3

∂H
∂(∂u1/∂x2)

+ κ4
∂H

∂(∂u1/∂x3)

+ κ5
∂H

∂(∂u2/∂x2)
+ κ6

∂H
∂(∂u2/∂x3)

+ κ7
∂H

∂(∂u3/∂x3)

+ κ8
∂u1

∂x1
+ κ9

∂u1

∂x2
+ κ10

∂u1

∂x3
+ κ11

∂u2

∂x2

+ κ12
∂u2

∂x3
+ κ13

∂u3

∂x3
= 0.
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Symmetries
The latter nonlinear system admits the Lie symmetries spanned by the
operators

Ξ1 =
∂

∂x1
, Ξ2 =

∂

∂x2
, Ξ3 =

∂

∂x3
,

Ξ4 =

(
x1 −

∂f
∂u1

)
∂

∂x1
+

(
x2 −

∂f
∂u2

)
∂

∂x2
+

(
x3 −

∂f
∂u3

)
∂

∂x3
,

where κi (i = 1, . . . ,7) must be expressed suitably in terms of κj
(j = 8, . . . ,13) and f (u1,u2,u3). It is:[

Ξi ,Ξj
]

= 0, [Ξi ,Ξ4] = Ξi , (i , j = 1,2,3).



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

κ1 = −
(

∂2f
∂u1∂u2

)2

κ13 +
∂2f

∂u1∂u2

∂2f
∂u1∂u3

κ12 +
∂2f

∂u1∂u2

∂2f
∂u2∂u3

κ10 −
∂2f

∂u1∂u2

∂2f
∂u2

3
κ9

−
(

∂2f
∂u1∂u3

)2

κ11 +
∂2f

∂u1∂u3

∂2f
∂u2∂u3

κ9 −
∂2f

∂u1∂u3

∂2f
∂u2

2
κ10 −

∂2f
∂u2

1

∂2f
∂u2∂u3

κ12

+
∂2f
∂u2

1

∂2f
∂u2

2
κ13 +

∂2f
∂u2

1

∂2f
∂u2

3
κ11 −

(
∂2f

∂u2∂u3

)2

κ8 +
∂2f
∂u2

2

∂2f
∂u2

3
κ8,

κ2 =
∂2f

∂u2∂u3
κ12 −

∂2f
∂u2

2
κ13 −

∂2f
∂u2

3
κ11,

κ3 = 2
∂2f

∂u1∂u2
κ13 −

∂2f
∂u1∂u3

κ12 −
∂2f

∂u2∂u3
κ10 +

∂2f
∂u2

3
κ9,

κ4 = − ∂2f
∂u1∂u2

κ12 + 2
∂2f

∂u1∂u3
κ11 −

∂2f
∂u2∂u3

κ9 +
∂2f
∂u2

2
κ10,

κ5 =
∂2f

∂u1∂u3
κ10 −

∂2f
∂u2

1
κ13 −

∂2f
∂u2

3
κ8, κ7 =

∂2f
∂u1∂u2

κ9 −
∂2f
∂u2

1
κ11 −

∂2f
∂u2

2
κ8,

κ6 = − ∂2f
∂u1∂u2

κ10 −
∂2f

∂u1∂u3
κ9 +

∂2f
∂u2

1
κ12 + 2

∂2f
∂u2∂u3

κ8.
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Mapping to a homogeneous and autonomous quasilinear system
By applying the theorem, we introduce

z1 = x1 −
∂f
∂u1

, z2 = x2 −
∂f
∂u2

, z3 = x3 −
∂f
∂u2

new indep. var.,

w1 = u1, w2 = u2, w3 = u3 new dep. var.,

and the generators of the point symmetries write as

Ξ1 =
∂

∂z1
, Ξ2 =

∂

∂z2
, Ξ3 =

∂

∂z3
, Ξ4 = z1

∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
;

as a result, the nonlinear system becomes:

∂w1

∂z2
− ∂w2

∂z1
= 0,

∂w1

∂z3
− ∂w3

∂z1
= 0,

∂w2

∂z3
− ∂w3

∂z2
= 0,

κ8
∂w1

∂z1
+ κ9

∂w1

∂z2
+ κ10

∂w1

∂z3
+ κ11

∂w2

∂z2
+ κ12

∂w2

∂z3
+ κ13

∂w3

∂z3
= 0.
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Decoupling problem of quasilinear first order systems

The decoupling of a quasilinear system of PDEs into subsystems of a
simpler form — when it is possible — has great effects on the
properties of its solutions and on the computer time required for its
numerical investigation.

Courant
This problem has been formulated by Courant [Courant, Hilbert:
Methods of Mathematical Physics, II, 1962] as follows:
When can a system like

∂u
∂t

+ a(u)
∂u
∂x

= 0

be locally decoupled in some coordinates v1(u), . . . , vn(u) into k
non-interacting subsystems?
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Theorem (Nijenhuis, 1951)
The necessary and sufficient condition for the complete decoupling of

∂tu + a(u)∂xu = 0, u ∈ Rn

into n non–interacting one–dimensional subsystems is the vanishing of
the corresponding Nijenhuis tensor

Njik = aαi
∂ajk

∂uα
− aαk

∂aji

∂uα
+ ajα

∂aαi

∂uk
− ajα

∂aαk

∂ui
.

provided that all eigenvalues of matrix a are real and distinct (strict
hyperbolicity).

Necessary and sufficient conditions for the Courant problem have been
provided in a series of papers by Bogoyavlenskij (2007) by using the
Nijenhuis tensor.
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Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.

The conditions do not involve the Nijenhuis tensor but simply the
eigenvalues and the eigenvectors (generalized, if needed) of the
coefficient matrix.

A solution to the Courant problem results as a by-product!

Remarkably, the theorem constructively provides the conditions for the
decoupling transformation.
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Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.
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Partial decoupling in 2 subsystems

Definition

The system
∂U
∂x1

+ A(U)
∂U
∂x2

= 0,

where U ∈ Rn and a ∈ L(Rn) is a real n × n matrix with entries depending on U, is
partially decoupled in two subsystems if, suitably sorting the components of U, we
recognize a subsystem of n1 (n1 < n) equations involving only (U1, . . . ,Un1 ) and a
subsystem of n2 = n − n1 equations involving in principle all components of U.

It means that matrix A ha the following block structure

A =

[
A1

(n1,n1)
0(n1,n2)

A2
(n2,n1)

A2
(n2,n2)

]
with Ai

(ni ,nj )
(i, j = 1, 2) ni × nj matrices with entries depending at most on (U1, . . . ,Umi ),

where m1 = n1 and m2 = n1 + n2, whereas 0(n1,n2) is a n1 × n2 matrix of zeros,



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Partial decoupling in 2 subsystems

Definition

The system
∂U
∂x1

+ A(U)
∂U
∂x2

= 0,

where U ∈ Rn and a ∈ L(Rn) is a real n × n matrix with entries depending on U, is
partially decoupled in two subsystems if, suitably sorting the components of U, we
recognize a subsystem of n1 (n1 < n) equations involving only (U1, . . . ,Un1 ) and a
subsystem of n2 = n − n1 equations involving in principle all components of U.

It means that matrix A ha the following block structure

A =

[
A1

(n1,n1)
0(n1,n2)

A2
(n2,n1)

A2
(n2,n2)

]
with Ai

(ni ,nj )
(i, j = 1, 2) ni × nj matrices with entries depending at most on (U1, . . . ,Umi ),

where m1 = n1 and m2 = n1 + n2, whereas 0(n1,n2) is a n1 × n2 matrix of zeros,



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Partial decoupling in k subsystems

Definition

The system
∂U
∂x1

+ A(U)
∂U
∂x2

= 0,

where U ∈ Rn and A ∈ L(Rn) is a real n × n matrix with entries
depending on U, is partially decoupled in k ≤ n subsystems of some
orders n1, . . . ,nk (n1 + . . .+ nk = n) if, suitably sorting the components
of U, we recognize k subsystems such that the i-th subsystem
(i = 1, . . . , k ) involves at most (U1, . . . ,Umi ), where

m1 = n1, mi = mi−1 + ni for i > 1.



logouniv

Francesco Oliveri – “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

It means that matrix A is a lower triangular block matrix, where the
blocks of the i–th row depend at most on (U1, . . . ,Umi ).

A =


A1
(n1,n1)

0(n1,n2) . . . . . . . . . 0(n1,nk )

A2
(n2,n1)

A2
(n2,n2)

0(n2,n3) . . . . . . 0(n2,nk )

. . . . . . . . . . . . . . . . . .

Ak−1
(nk−1,n1)

Ak−1
(nk−1,n2)

Ak−1
(nk−1,n3)

. . . Ak−1
(nk−1,nk−1)

0(nk−1,nk )

Ak
(nk ,n1)

Ak
(nk ,n2)

Ak
(nk ,n3)

. . . . . . Ak
(nk ,nk )

 ,

with Ai
(ni ,nj )

(i , j = 1, . . . , k ) are ni × nj matrices with entries depending

at most on U(r)
α (r = 1, . . . , i , α = 1, . . . ,nr ), whereas 0(ni ,nj ) are ni × nj

matrices of zeros, respectively; m1 = n1, mi = mi−1 + ni for i > 1.
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Lemma
Let A be a n × n real matrix with entries depending on U ≡ (U1, . . . ,Un) and assume
that such a matrix has real eigenvalues and a complete set of eigenvectors. Matrix A
has the structure

A =

[
A1

(n1,n1)
0(n1,n2)

A2
(n2,n1)

A2
(n2,n2)

]
with Ai

(ni ,nj )
(i, j = 1, 2) ni × nj matrices with entries depending at most on (U1, . . . ,Umi ),

where m1 = n1 and m2 = n1 + n2, whereas 0(n1,n2) is a n1 × n2 matrix of zeros, if and
only if by computing the n eigenvalues Λi (counted with their multiplicity) and the
corresponding left and right eigenvectors,

L(i) ≡ (L(i)
1 , . . . , L

(i)
n ), R(i) ≡ (R(i)

1 , . . . ,R
(i)
n )T ,

respectively, and suitably sorting the eigenvalues (and the corresponding eigenvectors),
the following conditions are satisfied:

(∇UΛi ) · R(j) = 0, L(i) ·
(

(∇UR(`))R(j) − (∇UR(j))R(`)
)

= 0,

i, ` = 1, . . . , n1, i 6= `, j = n1 + 1, . . . , n.
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Proof.
The set of its n eigenvalues, Λi , is the union of the set of the n1 eigenvalues of
A1

(n1,n1)
, depending at most on U1, . . . ,Un1 , and the set of the n2 eigenvalues of

A2
(n2,n2)

, depending in principle on all components of U.

Let us arrange the Λi ’s in such a way the first n1 elements are the eigenvalues of
A1

(n1,n1)
, and the remaining ones the eigenvalues of A2

(n2,n2)
.

The left eigenvectors Li corresponding to the eigenvalues Λi (i = 1, . . . , n1) of
matrix A1

(n1,n1)
may have only the first n1 components non–vanishing. Moreover,

either Λi or Li may depend only on U1, . . . ,Un1 .

On the contrary, the right eigenvectors Ri corresponding to the eigenvalues Λi

(i = n1 + 1, . . . , n) of matrix A2
(n2,n2)

may have non–vanishing only the last n2

components.

As a consequence, the conditions

(∇UΛi ) · R(j) = 0, L(i) ·
(

(∇UR(`))R(j) − (∇UR(j))R(`)
)

= 0,

(i, ` = 1, . . . , n1, i 6= `, j = n1 + 1, . . . , n) are trivially satisfied. Viceversa, if these
conditions are fulfilled then the matrix A has the above structure.
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Comment

A =

[
A1
(n1,n1)

0(n1,n2)

A2
(n2,n1)

A2
(n2,n2)

]
The conditions

(∇UΛi) · R(j) = 0, L(i) ·
(

(∇UR(`))R(j) − (∇UR(j))R(`)
)

= 0,

(i , ` = 1, . . . ,n1, i 6= `, j = n1 + 1, . . . ,n)

are n2
1n2 constraints stating the independence of the n2

1 entries of matrix
A1
(n1,n1)

from the n2 variables (Un1+1, . . . ,Un),
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Lemma
Let A be a n × n real matrix with entries depending on U ≡ (U1, . . . ,Un). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:

to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many linearly
independent vectors as the multiplicity of the eigenvalue;

to each couple of conjugate complex eigenvalues the real part and the imaginary
part of its (left and right) eigenvectors (or generalized eigenvectors, if needed) in
such a way we have as many couples of linearly independent vectors as the
multiplicity of the complex conjugate eigenvalues.

Let us denote with L(i) and R(i) (i = 1, . . . , n) such vectors. The conditions in previous
Lemma remain unchanged. In fact, the vectors L(i) (real eigenvectors, real generalized
eigenvectors, real and imaginary parts of complex eigenvectors and generalized
complex eigenvectors) corresponding to the eigenvalues Λi (i = 1, . . . , n1) of matrix
A1

(n1,n1)
may have only the first n1 components non–vanishing, and that the vectors R(i)

corresponding to the eigenvalues Λi (i = n1 + 1, . . . , n) of matrix A(n2,n2) may have
non–vanishing only the last n2 components.
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Lemma
Let A be a n × n real matrix with entries depending on
U ≡ (U(1)

1 , . . . ,U(1)
n1
, . . . ,U(k)

1 , . . . ,U(k)
nk

) (n1 + . . .+ nk = n). Matrix A is a block lower
triangular matrix,

A =


A1

(n1,n1)
0(n1,n2) . . . . . . . . . 0(n1,nk )

A2
(n2,n1)

A2
(n2,n2)

0(n2,n3) . . . . . . 0(n2,nk )

. . . . . . . . . . . . . . . . . .

Ak−1
(nk−1,n1)

Ak−1
(nk−1,n2)

Ak−1
(nk−1,n3)

. . . Ak−1
(nk−1,nk−1)

0(nk−1,nk )

Ak
(nk ,n1)

Ak
(nk ,n2)

Ak
(nk ,n3)

. . . . . . Ak
(nk ,nk )

 ,

with Ai
(ni ,nj )

(i, j = 1, . . . , k) are ni × nj matrices with entries depending at most on U(r)
α

(r = 1, . . . , i, α = 1, . . . , nr ), whereas 0(ni ,nj ) are ni × nj matrices of zeros, respectively,
if and only if the set of eigenvalues can be divided into k subsets each containing ni

(i = 1, . . . , k) eigenvalues (counted with their multiplicity) with corresponding left and
right vectors (in the above sense)
. . .
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. . . Continued

. . . {
{Λ(1)

1 , . . . ,Λ
(1)
n1
}, . . . , {Λ(k)

1 , . . . ,Λ
(k)
nk
}
}
,{

{L(1)
1 , . . . ,L(1)

n1
}, . . . , {L(k)

1 , . . . ,L(k)
nk
}
}
,{

{R(1)
1 , . . . ,R(1)

n1
}, . . . , {R(k)

1 , . . . ,R(k)
nk
}
}
,

provided that these structure conditions hold:(
∇UΛ(i)

α

)
· R(j)

γ = 0, L(i)
α ·
(

(∇UR(i)
β )R(j)

γ − (∇UR(j)
γ )R(i)

β

)
= 0,

i = 1, . . . , k − 1, j = i + 1, . . . , k , α, β = 1, . . . , ni , α 6= β, γ = 1, . . . , nj .

Proof.
The proof is immediate by using the same arguments as above.
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Theorem (Partial decoupling in k subsystems)
The first order quasilinear system

∂u
∂x1

+ a(u)
∂u
∂x2

= 0, u ∈ Rn, a(u) n × n matrix

is mapped by a (locally) invertible transformation u = h(U) (U = H(u)), into

∂U
∂x1

+ A(U)
∂U
∂x2

= 0, A = (∇Uh)−1 a (∇Uh) = (∇uH) a (∇uH)−1,

where A is a lower triangular block matrix (with hierarchical dependence of its entries)
iff, by computing (and suitably sorting) the n eigenvalues λi (counted with their
multiplicity) and the associated (left and right) vectors (real eigenvectors, and, if
needed, generalized real eigenvectors, real and imaginary parts of complex
eigenvectors or generalized eigenvectors) of matrix a, l(i) and r(i), respectively, it is:

∇uλ
(i)
α · r(j)γ = 0, l(i)α ·

(
∇ur(i)β · r

(j)
γ −∇ur(j)γ · r

(i)
β

)
,

∀ i = 1, . . . k − 1, j = i + 1, . . . , k , α, β = 1, . . . , ni , α 6= β, γ = 1, . . . , nj .

And the decoupling variables are U(i)
α = H(i)

α (u) such that
(
∇uH(i)

α

)
· r(j)γ = 0.
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Proof.
Due to

A = (∇Uh)−1 a (∇Uh) = (∇uH) a (∇uH)−1,

we have
Λ(i)
α = λ(i)

α ,

l(i)α = L(i)
α (∇uH),

r(i)α = (∇uH)−1R(i)
α .

The proof is gained by observing that(
∇uλ

(i)
α

)
· r(j)γ = 0, ⇔

(
∇UΛ(i)

α

)
· R(j)

γ = 0,

and

l(i)α ·
(

(∇ur(i)β )r(j)γ − (∇ur(j)γ )r(i)β
)

= 0 ⇔ L(i)
α ·
(

(∇UR(i)
β )R(j)

γ − (∇UR(j)
γ )R(i)

β

)
= 0,

i = 1, . . . , k − 1, j = i + 1, . . . , k , α, β = 1, . . . , ni , α 6= β, γ = 1, . . . , nj .
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Theorem (Courant problem)
For a system of quasilinear PDEs to be locally reducible into k non–interacting
subsystems of some orders n1,. . . , nk with n1 + · · · + nk = n it is necessary and
sufficient that the eigenvalues of the coefficient matrixi can be divided into k subsets
each containing ni (i = 1, . . . , k) eigenvalues (counted with their multiplicity) with
corresponding left and right vectors

{{λ(1)
1 , . . . , λ

(1)
n1
}, . . . {λ(k)

1 , . . . , λ
(k)
nk
}},

{{l(1)1 , . . . , l(1)n1
}, . . . {l(k)1 , . . . , l(k)nk

}},

{{r(1)1 , . . . , r(1)n1
}, . . . {r(k)1 , . . . , r(k)nk

}},
such that:

∇uλ
(i)
α · r(j)γ = 0,

l(i)α ·
(
∇ur(i)β · r

(j)
γ −∇ur(j)γ · r

(i)
β

)
,

∀ i, j = 1, . . . k , i 6= j, α, β = 1, . . . , ni , α 6= β, γ = 1, . . . , nj .

Moreover, the decoupling variables U = H(u) are found from(
∇uH(i)

α

)
· r(j)γ = 0. i, j = 1, . . . , k , i 6= j, α = 1, . . . , ni , γ = 1, . . . , nj .
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Example (1D Euler equation of barotropic fluids)
∂ρ

∂x1
+ u

∂ρ

∂x2
+ ρ

∂u
∂x2

= 0,

∂u
∂x1

+ u
∂u
∂x2

+
1
ρ

∂p
∂x2

= 0,

where ρ(x1, x2) is the mass density, u(x1, x2) the velocity and p(ρ) the pressure. The
constitutive law

p(ρ) =
k2

3
ρ3, k constant,

allow us to introduce the new dependent variables

U1 = u + kρ, U2 = u − kρ,

whereupon the source system is transformed in the following fully decoupled one

∂U1

∂x1
+ U1

∂U1

∂x2
= 0,

∂U2

∂x1
+ U2

∂U2

∂x2
= 0.
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Example (Moving threadline; Ames, Lee, Zaiser, 1968)
Let us consider the motion equations for a moving threadline, where ρ is the mass
density, u and v the components of velocity, ε the transverse displacement and T (m)
the tension: 

∂ρ

∂x1
+

∂

∂x2
(ρu) = 0,

∂u
∂x1

+ u
∂u
∂x2
− 1
ρ

∂

∂x2

(
T√

1 + ε2

)
= 0,

∂v
∂x1

+ 2u
∂v
∂x2

+

(
u2 − T

ρ
√

1 + ε2

)
∂ε

∂x2
= 0,

∂ε

∂x1
− ∂v
∂x2

= 0,

where ρ = m
√

1 + ε2, T ′(m) < 0.
Imposing the structure conditions for decoupling, the constitutive law

T (m) =
k2

m
, k constant,

arises, and the system is partially decoupled (the resulting system results also
completely exceptional!).
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Thanks for your attention.


