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Generic first Order PDEs

Consider a nonlinear mathematical model given in terms of a general
first order PDEs,

A (x, u, u(”) =0,

where
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Generic first Order PDEs

Consider a nonlinear mathematical model given in terms of a general
first order PDEs,

A (x, u, u(”) =0,

where
@ x € R” denotes the set of independent variables,
@ u(x) € R™ denotes the set of dependent variables,
© u() denotes the set of first order partial derivatives of u w.r.t. x.

Quasilinear systems

In mathematical physics a special role is played by quasilinear first
order systems:
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Plan of the talk
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1.2 Mapping of a nonlinear first order system to
homogeneous and autonomous quasilinear form;
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Plan of the talk

@ Lie group theory framework:

1.1 Mapping of a nonhomogeneous and nonautonomous
quasilinear first order system to homogeneous and
autonomous form;

1.2 Mapping of a nonlinear first order system to
homogeneous and autonomous quasilinear form;

@ Decoupling problem of a general quasilinear first order system in
two independent variables through (locally) invertible point
transformations.




Francesco Oliveri — “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”




Francesco Oliveri — “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Lie symmetries of DEs

@ Lie symmetries of DEs are important ingredients in the process of
finding solutions.




Francesco Oliveri — “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Lie symmetries of DEs

@ Lie symmetries of DEs are important ingredients in the process of
finding solutions.

©@ Lie symmetries of DEs can also be used to algorithmically
construct a mapping from a (SOURCE) DE to another (TARGET)
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Lie symmetries of DEs
@ Lie symmetries of DEs are important ingredients in the process of
finding solutions.
©@ Lie symmetries of DEs can also be used to algorithmically
construct a mapping from a (SOURCE) DE to another (TARGET)
suitable DE.

Mappings between different DEs

Such a mapping (if it exists) needs not be a group transformation;
moreover, any symmetry admitted by the source DE has to be mapped
to a symmetry admitted by the target DE.
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Lie symmetries of DEs

@ Lie symmetries of DEs are important ingredients in the process of
finding solutions.

@ Lie symmetries of DEs can also be used to algorithmically
construct a mapping from a (SOURCE) DE to another (TARGET)
suitable DE.

Mappings between different DEs

Such a mapping (if it exists) needs not be a group transformation;
moreover, any symmetry admitted by the source DE has to be mapped
to a symmetry admitted by the target DE.

If the mapping is 1-1 then the mapping must establish a 1-1
correspondence between symmetries of source and target DEs: the
corresponding Lie algebras of infinitesimal generators have to be
isomorphic.
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Considered Mappings

@ Nonautonomous and Nonhomogeneous First Order Quasilinear
PDEs vs. Autonomous and Homogeneous First Order Quasilinear
PDEs [F. O., IUNLM, 2012] by means of

z =2Z(x), w = W(x,u);
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Considered Mappings

@ Nonautonomous and Nonhomogeneous First Order Quasilinear
PDEs vs. Autonomous and Homogeneous First Order Quasilinear
PDEs [F. O., IUNLM, 2012] by means of

z =2Z(x), w = W(x,u);

@ Nonlinear first order PDEs to autonomous and homogeneous
quasilinear first order PDEs [F. O., 2015] by means of

z=12(x,u), w = W(x, u).
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Lemma

Given the system
n
S A (kw2 —G(xu).
i=1 2
an invertible mapping of the form

z =2Z(x), w = W(x,u),

produces a system still in quasilinear form.
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Lemma

Given the system
n
S A (kw2 —G(xu).
i=1 2
an invertible mapping of the form

z =2Z(x), w = W(x,u),

produces a system still in quasilinear form.

Straightforward. O
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Theorem [F. O., IINLM-2012]
i o 8
ZA (x, u) __B(xu) o ZA 6: 0

through an inverlble point transformation,

zZ= Z(X), W= W(X, u)7

if and only if it admits as subalgebra of its Lie point symmetries an (n + 1)—dimensional
Lie algebra spanned by

Zé’ +Zn,(xu , (e, n+1),

such that

[E/7Ef]:07 [E/>E"+1]:E/7 iaj:1>'“7n
Furthermore, all minors of order n extracted from the (n+ 1) x n matrix with entries 5{
(i=1,...,n+1,j=1,...,n) must be non—vanishing, and the variables w, which by

constructions are invariants of =1, . .., =,, must result invariant with respect to =, too.
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Proof: Necessary condition

Every system of the form

ZH:Z\" (W) M _g
i—1 0z

is invariant w.r.t. the n translations and a uniform scaling of the z;:

n
— [ = 8
== =) ="+1:,;Z"az,-‘

These vector fields span an (n + 1)—dimensional solvable Lie algebra,
Ei:£n+1]:Ei: /':1,....//77

and the structure of the Lie algebra of point symmetries is not changed
by an invertible point transformation.
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Proof: Sufficient condition

Under the hypotheses of the theorem, using the operators =1,..., =,
we may algorithmically construct a set of canonical variables z = Z(x),
w = W(x, u) such that

_ 0

-l — aZIJ

whereupon we get an autonomous system. As a result, since
[Zi,=ns1] == (i=1,...,n), and w are invariants for =, 4, it is

n
=i =32
—n+1—i_1 IaZ,"

ensuring that the autonomous system is also homogeneous.
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Example: Rotating shallow water equations

ht + uhx + vhy, + h(ux + vy) =0,
Ut + uuy + vuy + ghy = 2wv,
Vit + uvx + vv, + ghy, = —2wu,
where h is the height of the fluid, (u, v) the components of its velocity, g

the gravitational constant, and w the constant angular velocity of the
fluid around the x3—axis responsible for the Coriolis force.
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9—dimensional Lie algebra of point symmetries

= =0, =2 = Ox, =3 = Ox,,
=4 = X20x — X10x, + VOu — UDy,
=5 = C0S(2wt)dx, — Sin(2wt)dy, — 2w Sin(2wt)dy — 2w cos(2wt)dy,
=6 = sin(2wt)dx, cos(2wt)dx, + 2w cos(2wt)dy — 2w sin(2wt)dy,
=7 = X10x, + X20x, + Uy + VOy + 2h0h,
=g = sin(2wt)d: + w(xs cos(2wt) + X2 sin(2wt))Ox,
+ w(Xz cos(2wt) — X4 sin(2wt))dx,
+ w((2wxz — U) cos(2wt) + (—2wxq + V) sin(2wt)]dy
— w((2wx1 + v) cos(2wt) + (2wxz + u)) sin(2wt))dy
— 2whcos(2wt)oh,
=9 = C0S(2wt)dr + w(X2 cOS(2wt) — Xy SiN(2wt))0kx,
— w(Xxy cos(2wt) + Xz sin(2wt))dx,
— w((2wxy — v) cos(2wt) + (2wxz — u) sin(2wt))dy
— w((2wxz + u) cos(2wt) — (2wxq + V)) sin(2wt))oy
— 2whsin(2wt) .
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Thee 4—dimensional subalgebra spanned by the vector fields

=1 == +w=4 — =, =2 = =3 — =,

ES _ _ = 1/_ 1_

=3 = —=2 + =5, =4=5 =7 —=8 ),
w

allows us to introduce

1 1 1
T=—5- cot(wt), &= E(y — xcot(wt)), n= fg(x + y cot(wt)),

U= —%(u sin(2wt) — v(1 — cos(2wt)) — 2wx),

V=~ (u(1 — cos(2wt)) + vsin(@wt)) — 2wy),

1 — cos(2wt)

H= 5

h,

whereupon we get
U- + UUt + VU, + gH: = 0,

V, + UVe + WV, + gH, = 0,
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Example: Monatomic perfect gas in rotation and subject to gravity

3
v i\ Kold) _ e, g -
( +> v )er % =p(FF7+F"), =123,

where p is the density, 6 the temperature, v the velocity, I-',(’) the components of the
specific inertial forces, F,(e) the components of the specific external forces acting on the
gas, K is the Boltzmann constant, m the mass of a single particle.

FI(I) = 26,'/'[0J/Vj T wZX,' - (UJrXr)UJiy w = (07 O,UJ), Eijl RiCCi tensor.

p(FO + F) = (p(2wva + w?x1), p(—2wvs + w?Xe), —pg)-
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14 Lie point symmetries admitted

=1 =0 =2 = Oy, =3 = X20x — X10x, + V20y, — V10y,,
=4 = tax3 A 8v37 =5 = pap,

_ 1
=6 = X1 a)q = XZaxz aF <XS a4 Egtz) 8)(3 +V av1 = V26v2 = (V3 aF gt)8V3 I 296@7

=7 =to + th28x1 — wixy 8X2 — gt2BX3 + (—V1 + wive + wX2)8v1
+ (7th1 — Vo — wx1)8\,2 - (7V3 = 2gt)8v3 = 2069,

= 1

Zp = 20+ t(X1 + wixe)Ox, — Hwixi — X2)Os, — ét(glr2 — 2x3)Dy, — 3ptd,
+ (—tvi + wtve + X1+ 2wbxe) Dy, + (—wl Vi — tvo — 2wtxi + x2) Dy,
+ %(—391‘2 — 2tva + 2x3)0v, — 21000,

=9 = cos(wt)dx, — sin(wt)dx, — wsin(wt)dy, — w cos(wt)dy,,
=10 = Sin(wt)dx, + cos(wt)dx, + w cos(wt)dy, — w sin(wt)dy,,
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=11 = —tcos(wt)dx, + tsin(wt)dx, + (— cos(wt) + wtsin(wt))d,
+ (sin(wt) + wt cos(wt))O,,
=12 = tsin(wt)dx, + tcos(wt)dx, + (sin(wt) + wt cos(wt))dy,
+ (cos(wt) — wsin(wt))dy,,
Z13 = (—9f° — 2x3) cos(wt)dy, + (gt + 2x3) sin(wt)dx, + 2(x1 cos(wt) — Xz sin(wt))dx,
+ (—2gt cos(wt) — 2vz cos(wt) + gwt® sin(wt) + 2wxs sin(wt))d,
+ (gwt? cos(wt) + 2wxs cos(wt) + 2gt sin(wt) + 2vs sin(wt))dy,
+ 2(v1 cos(wt) — wxz cos(wt) — vz sin(wt) — wxq sin(wt))dy,,
Z14 = (g + 2x3) sin(wt)dyx, + (g + 2X3) cOS(wt)dy, — 2(X2 COS(wt) + X1 SiN(wt))Dx,
+ (gwt? cos(wt) + 2wxs cos(wt) + 2gt sin(wt) + 2vs sin(wt))dy,
+ (2gt cos(wt) + 2v5 cos(wt) — gwt? sin(wt) — 2wxs sin(wt))dy,
+ 2(—va cos(wt) — wxq cos(wt) — vq sin(wt) + wxz sin(wt))y, .
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Reduction to homogeneous and autonomous form

By taking the 5—dimensional Lie subalgebra of Lie point symmetries spanned

~

1 ==1+w=3 — gE47 =2 — 597
3 = =10, =y =Sg, =5 = =5 + =7,

the non—zero commutators are [?;7 25} = g,-, i=1,...,4.
Construct the new independent (7, &1, &2, £3) and dependent (R, V4, Vo, V3, T) variables
T=1,
&1 = X1 cos(wt) — Xz sin(wt),
& = X1 Sin(wt) + Xz cos(wt),
& = X3+ 159127
R=p, T=20,
Vi = ((vi — wx2) cos(wt) — (Vo + wxq) sin(wt)),
Vo = ((v2 + wxq) cos(wt) + (v4 — wxz) sin(wt)),
Vs = v3 + gt.
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Reduction to homogeneous and autonomous form

Hence, the operators = (i=1,...,5) write as
Or, Oy, Og,, Ogs, TOr + &10gy + £20¢, + &30¢;,

and the system reduces to homogeneous and autonomous form:

Za(RVk) 0
< Ok ’
Vi <~ 0Vi\ , KA(RT) o
R<87+;Vk8£k>+m aé.l —07 ’_172737

T 0T 29V
ar t 2 Vigg, t57 2 g, =°
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General nonlinear systems
If we have a general first order nonlinear system of PDEs,

A (x, u, u(”) =0

and we want to check if it is equivalent to a quasilinear homogeneous
and autonomous system, we may look for an invertible mapping like

z=12(x,u), w = W(x,u).
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General nonlinear systems
If we have a general first order nonlinear system of PDEs,

A (x, u, u(”) =0

and we want to check if it is equivalent to a quasilinear homogeneous
and autonomous system, we may look for an invertible mapping like

z=12Z(x,u), w = W(x,u).

If this is possible then the nonlinear system has to possess a suitable
(n+ 1)—dimensional solvable Lie algebra as subalgebra of the algebra
of its Lie point symmetries.
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Theorem [F. O., 2015]
A necessary condition in order the nonlinear system

A (x, u,u(”) =0
be transformed by the invertible map
z =2Z(x,u), w = W(x,u)

into an autonomous and homogeneous first order quasilinear system is that it admits as
subalgebra of its Lie point symmetries an (n + 1)—dimensional Lie algebra spanned by

n 8 m 8
—ha J v A :
= —;ﬁ,(x,u)axj +;77: (x,u)—auA, (,...,n+1),

such that

[E,5] =0, EnEnnll==0 ihj=1,...,n
Furthermore, all minors of order n extracted from the (n+ 1) x (n+ m) matrix with
entries g{i and 7/ must be non—vanishing, and the variables w, which by constructions
are invariants of =4, ..., =5, must result invariant with respect to =1 too.
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Monge—Ampére equation in (1 + 1) dimensions

Consider the 2nd order Monge—Ampeére equation (the most general
completely exceptional 2nd order equation [Boillat, 1968],

2
KA (UX1X1 UX2X2 - uX1X2> + K’ZUX1X1 + K/3UX1X2 + IQ4UX2X2 + K5 = 07

where (X1, X2, U, Ux, , Uy,) (I = 1,...,5); hereafter, we assume x5 = 0
and x; (i =1,...,4) depending at most on first order derivatives. A
nonlinear first order system is obtained through the positions
UX1 :U'], UX2:U2:
v _ oup _
3X2 8X1 RS
8U1 aUQ 8u1 2
a(th, te) (axax - (3¢) )

ou ou
+ nz(uhuz)a—xj + ra(Ur, U2) 5 + Ka(ur, Us)

Our _
OX2 0Xo

=0.
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Monge—Ampére equation
The nonlinear system equivalent to the Monge-Ampeére equation admits
the Lie symmetries spanned by the operators

— 0 _ d

=== o = —
6x1’ 8X27

S AN A AN
=3 1 ouy ) 0xq 2 OUo 8X2’
where f(uy, Uo) is such that:

o2 o2 oPf

—K +K = 0.
o2 "Poudu, P ouR

K1+ kg

Itis:

[Z1,=2] =0, [=1,33] = =4, [Z2,Z3] = =2
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Mapping to a homogeneous and autonomous quasilinear system
By applying the theorem, we introduce

z X i Zo = X: o new indep. var
1 =X EIE > = Xo oy’ P. -
Wi = U, Wo = U — Xo, new dep. var.,

and the generators of the point symmetries write as

=, = i =5 — i = Z + Z
-1 024 ’ —2- 8227 == 182 2822
as a result, the nonlinear system becomes:
3W1 _ 8W2 -0
822 (921 -
owq Wi OWo
Wi, Wo)—— Wy, W Wy, W = 0.

Ko (Wr, 2)821 + rig(wr, 2)a + Ka(wy, 2)822
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Monge—Ampeére equation in (2 + 1) dimensions

The most general 2nd order (hyperbolic) equation completely
exceptional in (2 + 1)dimensions [Ruggeri, 1973] is:

Ux1 Xq UX1 Xo UX1 X3
H = det UX1X2 UX2X2 UX2X3

UX1 X3 UX2X3 UX3X3

oH e oH I oH
au)ﬁ X3 > 8L’XzXz ° 8Ux2x3

oOH
rk1H + Ko + K3

+ Kq
8[")(1 X1

OUx, x

+ K7

=+ K’SUX1X1 + K/QUX1X2 + K1OUX1X3 + K11 uX2X2
OUy,x,

+ K12Uxpxs + K13Uxgxy + K14 = 0,
where r;(X1, X2, X3, U, Uy, , Ux,, Uxs ), i=1,...,14; hereafter, we assume

k14 =0and k; (i =1,...,13) depending at most on first order
derivatives.
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Monge—Ampére equation in (2 + 1) dimensions
A nonlinear first order system is obtained through the positions

Uy = Uy, Uo = Uy, U3z = Uy, :
6U1 6u2 . 8U~| 8U3 _ BUQ 8U3 .
X Oy g Oxg | Oxg Oxp
kiH + HgiaH + K3 ikl + K4 izl
8(8U1 /8x1) 6(8U1 /an) 8((9U1 /3X3)
. oH e oH e oH
20(0ue/0xe) 00Uz /0xs) " D(OUs/OXs)
ouy ouy oujy ouo
+1€88 + R 98 4-/-61067)(3+f~”u11éT(2
3U3

8u
+I€128 +I€138X3 0.
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Symmetries

The latter nonlinear system admits the Lie symmetries spanned by the
operators

-9 - _9 - _ 9

-1 6X1 ’ 2= 8X2, =3 = 8X3’

S S/ N R S A N R AN

-4 ! 8U1 8X1 2 8u2 8x2 8 6u3 8X3’
where ; (i =1,...,7) must be expressed suitably in terms of x;

028,...,13) and f(U1,U2,U3). Itis:

[EME/] =0, [EiaE4] = =i, (Ivj = 17233)
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O G5 S s A P _Pr o Pt
= Ou Oy BT Suow udus 2T Oous Ouous T Aurdu, a2 e
(PN Pt Pt Pf Pt Pf 9
ourdus OUrOUs DU0Us ° durdus AUZ o ou? T
9°f O°f AL O R S i i
au? U2 s A2 OL2 i OU0Us L2 du2 "
K2 = 782)‘ K —@I{ — 82)‘/{
Z*auzaua 12 BUS 13 8u§ 11,
K3 = 782f K13 — 1 K12 — 1 K +ﬁ/{
ST Sowmou, T duous P T dwous T "™
P Pf P azfﬁ
T, TR T, PR T, T oz
N T o, or,
ST owows T 8™ T o™ T o, ™ T a2
o Pt o Of
= “owone"° " duons ™ T 92"t “au0u, "
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Mapping to a homogeneous and autonomous quasilinear system
By applying the theorem, we introduce

Z1 =X cli Z = X el Z3 = X i new indep. var

1=X1 = 5— 2 =Xo — 75— 3= X3 — 75— - var.
8U1 ’ 8U2’ 81.12 ’

Wi =U, Weo=1U, W;=Us new dep. var.,

and the generators of the point symmetries write as

S _ 9 o _0 - _0 o _,0 ., . 0 09
_17821’ _27(922’ _37623’ == 1821 2822 3623

1

as a result, the nonlinear system becomes:

8W1 BWQ 8W1 8W3 0 6W2 aW3 .

(922 821 - 823 821 823 822 o
6W1 3W1 8W1 8W2 8W3

K8 + Koo + Koz + kK %—FH — +ki3— =0
8821 9822 10 823 11822 12 823 18 823 -

- — £ — — — =0,

’
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Decoupling problem of quasilinear first order systems

The decoupling of a quasilinear system of PDEs into subsystems of a
simpler form — when it is possible — has great effects on the
properties of its solutions and on the computer time required for its
numerical investigation.
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Decoupling problem of quasilinear first order systems

The decoupling of a quasilinear system of PDEs into subsystems of a
simpler form — when it is possible — has great effects on the
properties of its solutions and on the computer time required for its
numerical investigation.

Courant

This problem has been formulated by Courant [Courant, Hilbert:
Methods of Mathematical Physics, I, 1962] as follows:

When can a system like

ou ou
3t + az(u)a 0
be locally decoupled in some coordinates vi(u), ..., va(u) into k

non-interacting subsystems?
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Theorem (Nijenhuis, 1951)
The necessary and sufficient condition for the complete decoupling of

diu + a(u)oxu = 0, ueR”’
into n non—interacting one—dimensional subsystems is the vanishing of
the corresponding Nijenhuis tensor
8ajk B aa,-,- ' 0a, . 0auk
e “*ou,

Niik = @i

provided that all eigenvalues of matrix a are real and distinct (strict
hyperbolicity).
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Theorem (Nijenhuis, 1951)
The necessary and sufficient condition for the complete decoupling of

diu + a(u)oxu = 0, ueR”’
into n non—interacting one—dimensional subsystems is the vanishing of
the corresponding Nijenhuis tensor
8ajk aa,-,- ' 0a, . 0auk

Nix = a,i —
jik i U, ak U,

provided that all eigenvalues of matrix a are real and distinct (strict
hyperbolicity).

Necessary and sufficient conditions for the Courant problem have been
provided in a series of papers by Bogoyavlenskij (2007) by using the
Nijenhuis tensor.
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Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.




Francesco Oliveri — “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.

The conditions do not involve the Nijenhuis tensor but simply the
eigenvalues and the eigenvectors (generalized, if needed) of the
coefficient matrix.
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Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.

The conditions do not involve the Nijenhuis tensor but simply the
eigenvalues and the eigenvectors (generalized, if needed) of the
coefficient matrix.

A solution to the Courant problem results as a by-product! ]
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Decoupling problem solved with simple tools

A very general result stating the necessary and sufficient conditions
guaranteeing the partial decoupling of quasilinear first order system of
PDEs is here presented.

The conditions do not involve the Nijenhuis tensor but simply the
eigenvalues and the eigenvectors (generalized, if needed) of the
coefficient matrix.

A solution to the Courant problem results as a by-product! ]

Remarkably, the theorem constructively provides the conditions for the
decoupling transformation.
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Partial decoupling in 2 subsystems

Definition

The system
ouU ouU

ox TAWZ- =0,
where U € R" and a € L(R") is a real n x n matrix with entries depending on U, is
partially decoupled in two subsystems if, suitably sorting the components of U, we
recognize a subsystem of n; (ny < n) equations involving only (U, ..., U, ) and a
subsystem of n, = n — n; equations involving in principle all components of U.
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Partial decoupling in 2 subsystems

Definition
The system

ou ouU

where U € R" and a € L(R") is a real n x n matrix with entries depending on U, is
partially decoupled in two subsystems if, suitably sorting the components of U, we
recognize a subsystem of n; (ny < n) equations involving only (U, ..., U, ) and a
subsystem of n, = n — n; equations involving in principle all components of U.

It means that matrix A ha the following block structure
1

A= A5n1,n1) 0(2’71 2)

(n2,n1) A(nz,nz)

with Aén,-,n,-) (i,j =1,2) n; x n; matrices with entries depending at most on (U, ..., Un,),
where my = ny and ma = ny + Nz, whereas 0O,, n,) iS @ Ny x ne matrix of zeros,
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Partial decoupling in k subsystems

Definition
The system
ou ou
ZZ L AU =
194 + (U)3X2
where U € R" and A € L(R") is a real n x n matrix with entries
depending on U, is partially decoupled in k < n subsystems of some

0,

orders nq,..., N, (N1 + ...+ ng = n) if, suitably sorting the components
of U, we recognize k subsystems such that the i-th subsystem
(i=1,...,k) involves at most (U, ..., Un,), where

my = ny, m; =mj_y+ n;fori>1.
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It means that matrix A is a lower triangular block matrix, where the
blocks of the i—th row depend at most on (Uy, ..., Un,).

i A;’HJH) 0(2,717,,2) - - - 0(n1,nk)
A(ng,m) A(ng,ng) O(f727’73) e T 0(”2,nk)
A= ,
K—1 Kk—1 k—1 k—1 0
(’Lk—1 ,ny) (’;(k—1 ) (Nk—1,n3) *°° (Pk—1,Mk—1) (';("—17”’()
L Aleny Aom) Alony) - oo Alnn)

with Aén,-,n,-) (i,j =1,...,k) are n; x n; matrices with entries depending

at most on U,S[) (r=1,...,i, a=1,...,n/), whereas O(n;,my) @re Ny x nj
matrices of zeros, respectively; my = ny, mj = mj;_4 + n; for i > 1.
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Lemma

Let A be a n x n real matrix with entries depending onU = (U, ..., U,) and assume
that such a matrix has real eigenvalues and a complete set of eigenvectors. Matrix A

has the structure
|: A1n ) 0(,7 ) :|
A = g 1, > 1,112
(n2,n4) A(nz,nz)
with Aénf,n,') (i,j = 1,2) nj x nj matrices with entries depending at most on (U, . .., Un,),
where my = ny and my = ny + na, whereas Oy, n,) iS @ M x nx matrix of zeros, if and

only if by computing the n eigenvalues A\; (counted with their multiplicity) and the
corresponding left and right eigenvectors,

LO =0 .., RO=@RD ... RMT,

respectively, and suitably sorting the eigenvalues (and the corresponding eigenvectors),
the following conditions are satisfied:

(Vur)-R? =0, LO- ((VuR)R? — (VuR)R?) =0,
ih0=1,...,n, i # Y, j=m+1,...,n
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@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of

Af,,z_ynz), depending in principle on all components of U.
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Proof.

@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of

Af,,z_ynz), depending in principle on all components of U.
@ Let us arrange the A/’s in such a way the first n; elements are the eigenvalues of

A2n1-,n1)’ and the remaining ones the eigenvalues of Af,,z,,,z).
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Proof.

@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of

Af,,z_ynz), depending in principle on all components of U.

@ Let us arrange the A/’s in such a way the first n; elements are the eigenvalues of

A2n1-,n1)’ and the remaining ones the eigenvalues of Af,,z,,,z).

@ The left eigenvectors L; corresponding to the eigenvalues A; (i =1, ..., ny) of
matrix Agm ,n;) May have only the first n; components non-vanishing. Moreover,
either A; or L; may depend only on Uy, ..., Uy, .
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Proof.

@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of
Af,,z_ynz), depending in principle on all components of U.

@ Let us arrange the A/’s in such a way the first n; elements are the eigenvalues of

A2n1-,n1)’ and the remaining ones the eigenvalues of Af,,z,,,z).

@ The left eigenvectors L; corresponding to the eigenvalues A; (i =1, ..., ny) of
matrix Agm ,n;) May have only the first n; components non-vanishing. Moreover,
either A; or L; may depend only on Uy, ..., Uy, .

@ On the contrary, the right eigenvectors R; corresponding to the eigenvalues A;
(i=n +1,...,n) of matrix A(2,,2,n2) may have non—vanishing only the last n,
components.
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Proof.

@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of
Af,,z_ynz), depending in principle on all components of U.

@ Let us arrange the A/’s in such a way the first n; elements are the eigenvalues of

A2n1-,n1)’ and the remaining ones the eigenvalues of Af,,z,,,z).

@ The left eigenvectors L; corresponding to the eigenvalues A; (i =1, ..., ny) of
matrix Agm ,n;) May have only the first n; components non-vanishing. Moreover,
either A; or L; may depend only on Uy, ..., Uy, .

@ On the contrary, the right eigenvectors R; corresponding to the eigenvalues A;
(i=n +1,...,n) of matrix A(2,,2,n2) may have non—vanishing only the last n,
components.
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@ The set of its n eigenvalues, A;, is the union of the set of the n; eigenvalues of
Azm’m), depending at most on Uy, ..., U,,, and the set of the n, eigenvalues of

Af,,z_ynz), depending in principle on all components of U.

@ Let us arrange the A/’s in such a way the first n; elements are the eigenvalues of
A2n1-,n1)’ and the remaining ones the eigenvalues of AZ

(n2,m2)"
@ The left eigenvectors L; corresponding to the eigenvalues A; (i =1, ..., ny) of
matrix Agm ,n;) May have only the first n; components non-vanishing. Moreover,

either A; or L; may depend only on Uy, ..., Uy, .

@ On the contrary, the right eigenvectors R; corresponding to the eigenvalues A;
(i=n +1,...,n) of matrix A(2,,2,n2) may have non—vanishing only the last n,
components.

As a consequence, the conditions
(VuA)-RD =0, LO. ((VUR(L’))R(/) _ (VURU))R(‘)) -0,

(b e=1,...,m, i#4£ j=m+1,...,n) are trivially satisfied. Viceversa, if these
conditions are fulfilled then the matrix A has the above structure. L]
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Comment

(n2,ny) A("z,ﬂz)

A;nhm) 0(2,717”2) ]

The conditions
(VuA)) -RY =0, Lo . ((VUR(‘Z))RU) _ (VUR(/))R(Z)) — 0,
(ibe=1,....n, i %4, j=n+1,...,n)

are n?ng constraints stating the independence of the n? entries of matrix

Azm,m) from the n, variables (Up, 11, . - ., Un),
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Let A be a n x n real matrix with entries depending on U = (U, . .., Uy,). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:



Francesco Oliveri — “First Order Partial Differential Equations: Symmetries, Equivalence and Decoupling”

Lemma

Let A be a n x n real matrix with entries depending on U = (U, . .., Uy,). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:

@ to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many linearly
independent vectors as the multiplicity of the eigenvalue;
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Lemma

Let A be a n x n real matrix with entries depending on U = (U, . .., Uy,). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:

@ to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many linearly
independent vectors as the multiplicity of the eigenvalue;

@ fo each couple of conjugate complex eigenvalues the real part and the imaginary
part of its (left and right) eigenvectors (or generalized eigenvectors, if needed) in
such a way we have as many couples of linearly independent vectors as the
multiplicity of the complex conjugate eigenvalues.
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Lemma

Let A be a n x n real matrix with entries depending on U = (U, . .., Uy,). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:

@ to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many linearly
independent vectors as the multiplicity of the eigenvalue;

@ fo each couple of conjugate complex eigenvalues the real part and the imaginary
part of its (left and right) eigenvectors (or generalized eigenvectors, if needed) in
such a way we have as many couples of linearly independent vectors as the
multiplicity of the complex conjugate eigenvalues.
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Lemma

Let A be a n x n real matrix with entries depending on U = (U, . .., Uy,). If the matrix A
has not a complete set of eigenvectors and/or has complex-valued eigenvalues, let us
associate:

@ to each real eigenvalue its (left and right) eigenvectors and, if needed, its
generalized (left and right) eigenvectors in such a way we have as many linearly
independent vectors as the multiplicity of the eigenvalue;

@ fo each couple of conjugate complex eigenvalues the real part and the imaginary
part of its (left and right) eigenvectors (or generalized eigenvectors, if needed) in
such a way we have as many couples of linearly independent vectors as the
multiplicity of the complex conjugate eigenvalues.

Let us denote with L and R¥) (i =1, ..., n) such vectors. The conditions in previous
Lemma remain unchanged. In fact, the vectors LY (real eigenvectors, real generalized
eigenvectors, real and imaginary parts of complex eigenvectors and generalized
complex eigenvectors) corresponding to the eigenvalues \; (i=1,. .., ny) of matrix
Als, oy May have only the first i components non-vanishing, and that the vectors R?)
corresponding to the eigenvalues \; (i = ny +1,..., n) of matrix A, n,y may have
non-vanishing only the last n, components.
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Lemma

Let A be a n x n real matrix with entries depending on
U= (UM, U0 U8, U (ny + ..+ ni = n). Matrix A s a block lower
triangular matrix,

]
Ag”h'ﬁ) 0(2,71 .no) L. . R 0(,717,71()
om)  Amny  Oemy) - e O(n.mi)
A= :
k—1 k—1 k—1 k1
A(”k71,"1) (%71»'72) (’;571,’73) T (Mk—15Mk—1) o("l‘(‘*“"k)
A(nk7"1) A(”kan) A("kyns) T T A(”kank)

with Aly, oy (i,j =1, k) are n; x n; matrices with entries depending at most on ul
(r=1,...,i, a=1,...,n;), whereas O(ny,my) @re nj x n; matrices of zeros, respectively,
if and only if the set of eigenvalues can be divided into k subsets each containing n;
(i=1,..., k) eigenvalues (counted with their multiplicity) with corresponding left and
right vectors (in the above sense)
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...Continued

1 1
{{/\g A AS

{{L“)... LDy, .. (L)

{{F{1 )L RDY R,

provided that these structure conditions hold:

(Vur?)-RY =0, LY ((VuRD)RY
=1, k=1, =041,k 0 B=1,...

k k
)7-“7/\51;()}}7

..,ng)}} :

.,Rf,’f()}} :

~ (YRR =0,
ani7 Oé?éﬂ, 7:17"'7,7/
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{{/\ﬁ”,...,/\(n?},..,,{/\gk&__"/\(n?}}7
(L 1)
(1RO, R}, .., (R, RO}

provided that these structure conditions hold:

(Vurn?) RO =0, LY ((VuRD)RY - (VuRD)RY) =0,
P=A, k=, j=i4 1,k aB=1, . a kB =1, 0

The proof is immediate by using the same arguments as above. L]
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Theorem (Partial decoupling in k subsystems)

The first order quasilinear system
ou I a(u)%' =0, ucR” a(u) nx n matrix
2

is mapped by a (locally) invertible transformation u = h(U) (U = H(u)), into

N Y _

ox TAW TS =0, A=(Vuh) ' a(Vuh) = (VuH)a(VuH) ",

where A is a lower triangular block matrix (with hierarchical dependence of its entries)
iff, by computing (and suitably sorting) the n eigenvalues \; (counted with their
multiplicity) and the associated (left and right) vectors (real eigenvectors, and, if
needed, generalized real eigenvectors, real and imaginary parts of complex
eigenvectors or generalized eigenvectors) of matrix a, 1) and r'), respectively, it is:

Vo =0, 1. (Vurg)mgj’ —Vurg)wg)),
Vi=1, k=1, j=it 1,k a,B=1 ., a#B v=1,...,n.

And the decoupling variables are U = HO(u) such that (VUH((P) ¥ =o.
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Proof.
Due to
A= (Vyh)™" a(Vyh) = (VuH) a(VuH) ",
we have
AD = A0
I = L >(qu)
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Proof.
Due to
A= (Vyh)™" a(Vyh) = (VuH) a(VuH) ",
we have
AD = A0
I = L >(qu)
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Proof.
Due to
A= (Vyh)™" a(Vyh) = (VuH) a(VuH) ",
we have
R =,
I = LY(VH),
= (VuH) 'R

The proof is gained by observing that
(var?) =0, & (vur?)-RY =0,
and
10 (Turr) — (V)Y =0 & LY ((VuRDIRY - (VuRPIRY) =0,

i=1,.. k=1, j=i+1,.. k a,f=1,....m a#B, vy=1,....n.
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Theorem (Courant problem)

For a system of quasilinear PDEs to be locally reducible into k non—interacting
subsystems of some orders ny,.. ., nx with ny + --- + nx = n it is necessary and
sufficient that the eigenvalues of the coefficient matrixi can be divided into k subsets
each containing n; (i =1, ..., k) eigenvalues (counted with their multiplicity) with
corresponding left and right vectors

TR L0 S R
TR 180 SO | LI 142 5%

{r", .. nﬂ},...{ LY
such that:

VA —0
I -(Vur(ﬂ)mg)—vurg)-rg))?
Vijj=1,...k,i#j, a,8=1,....m, a#p, y=1,...,n.

Moreover, the decoupling variables U = H(u) are found from

(vu/-/g))mgf'):o. =1,k iZj, a=1,....m y=1,....n.
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Example (1D Euler equation of barotropic fluids)

Op Op
8X v an
o ou
8X1 8X2

ou
8X2
10p _
4 8)(2 -

+pp— =0,

)

where p(x1, X2) is the mass density,
constitutive law

p(p) =

u(x1, x2) the velocity and p(p) the pressure. The

kK 35
3P7

2
k constant,

allow us to introduce the new dependent variables

U, IU—|—kp7

whereupon the source system is transformed in the following fully decoupled one

U2=U—kp,

ouy ol
8X1 U1 BXQ - 07
Uy , 0
8X1 28X2 -
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Example (Moving threadline; Ames, Lee, Zaiser, 1968)

Let us consider the motion equations for a moving threadline, where p is the mass
density, u and v the components of velocity, e the transverse displacement and T(m)
the tension:

ﬁﬂ,@,li( v ):
x| T oxe pdxe \V1te '

ﬂ_’_Zuﬂ_‘_(uz_iT )aE:O7
P

0Xq 0Xo V14 € X
Oe Ov _
8X1 8X2 -

where p = mv/1 + €2, T'(m) < 0.
Imposing the structure conditions for decoupling, the constitutive law

k2
T(m) = o k constant,

arises, and the system is partially decoupled (the resulting system results also
completely exceptional!).
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Thanks for your attention.




