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Abstract : We study surfaces equipped with a Chebyshev net such that

the Gauss curvature K and a naturally defined curvature G of the net

satisfy a linear condition ↵K + �G + � = 0, where ↵, �, � are constants.

These surfaces form an integrable class. We point out some of its

noteworthy peculiarities.
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Chebyshev nets

Surfaces of interest in geometry and applications often bear a
special net of curves (two 1-parametric families of curves).

Chebyshev coordinate nets are characterized by the first
fundamental form

I = dx

2 + 2 cos ' dxdy + dy

2
.

They were originally introduced by P.L. Chebyshev in the context
of clothing. When a fabric moulds to the body, the warp and weft
fibers do not slide across each other at the points of intersection.
Instead, they slant and the warp-weft angle can take arbitrary
values '(x, y) 6= k⇡.

A Chebyshev net locally exists on every smooth surface and is
determined given a pair of transversal lines on the surface.
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Example: String bags

Photo by Morlawmina

In this example there is a prescribed supporting surface.
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Di↵erent settings

Photo by Chinar2011

Quite often there is no predefined supporting
surface. For instance, the Chebyshev net can
be a mathematical model of a physical net sub-
ject to certain PDE (equilibrium conditions)
and boundary conditions.

Heinz Thomas, Zur Frage des Gleichgewichts von

Tschebysche↵-Netzen aus verknoteten und gespan-

nten Fäden, Math. Z. 47 (1942) 66–77.

This idea is used in free form construction.
Timber grid shells are equilibrium states of
Chebyshev nets under elastic forces combined
with gravity. The actual shape is determined
by boundary conditions.
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Example. A timber roof

 ������gravity�

A picture by Oosoom
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Integrability

Several soliton-theoretic integration methods rely on a 1-parametric
zero curvature representation

D

y

A�D

x

B + [
A, B

] = 0

with A, B depending on a parameter.

A classification result

I.S. Krasil’shchik and M. Marvan, Coverings and integrability of the

Gauss–Mainardi–Codazzi equations, Acta Appl. Math. 56 (1999)

217–230.

We looked for 1-parametric sl(2)-valued zero curvature
representations for the Gauss–Mainardi–Codazzi equations in
Chebyshev coordinates.

The classification result (incomplete), included five classes. One of
them will be considered below.
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Notation

Consider a surface r(x, y) immersed in the three-dimensional
Euclidean space. Let n(x, y) be the unit normal. Up to rigid
motions, r is determined by its first and second fundamental forms.

We assume the first fundamental form

I = dx

2 + 2 cos ' dxdy + dy

2
.

The second fundamental form is arbitrary, written as

II = b11 dx

2 + 2b12 dxdy + b22 dy

2
.

Convenient variables are h

ij

defined by

b

ij

= h

ij

sin '.

Under this notation, the Gauss curvature is simply

K = h11h22 � h

2
12 = deth.
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Curvature linear nets

The Gauss–Mainardi–Codazzi equations are

'

xy

+ (
h11h22 � h

2
12) sin ' = 0,

h11,y

= h12,x

� (cot '

)
'

y

h11 + (sin '

)�1
'

x

h22,

h12,y

= h22,x

� (sin '

)�1
'

y

h11 + (cot '

)
'

x

h22.

With three equations on four unknowns ', h11, h12, h22, the GMC
system is obviously underdetermined. According to the
classification result mentioned above, the system possesses a
1-parametric zero curvature representation if we add the extra
equation

↵K + �G + � = 0,

where ↵,�, � are arbitrary constants, not all being equal to zero,
and K = h11h22 � h

2
12, G = h12.
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The meaning of G.

While K is the usual Gaussian curvature of the surface, the
geometric meaning of G = h12 is not obvious. Nets have been
studied extensively, yet there seems to be no earlier reference to G

than by

W.K. Schief, Discrete Chebyshev nets and a universal permutability

theorem, J. Phys. A: Math. Theor. 40 (2007) 4775–4801.

In the spirit of R. Sauer, a net is a smooth limit of a quadrilateral
mesh. Every quadrilateral segment is a tetrahedron. Define

G =
3
2

lim
h�!0

V

h

A

2
h

=
6 lim

h�!0

V

h

h

4

4 lim
h�!0

A

2
h

h

4

= 6
[
r

x

, r

y

, r

xy

]
[
r

x

, r

y

,n

]2
= h12.

where V

h

is the volume of the tetrahedron and A

h

is the area of its
triangular face. Schief’s definition is equivalent to this one.
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Well understood special cases of curvature linear nets

Several special cases of the condition ↵K + �G + � = 0 are well
known.

The Lund–Regge system. The case of ↵ = 0, �� 6= 0 is well
understood due to Schief [op. cit.]. Here G = � = h12 is a constant.
If � 6= 0, then � can be reduced to 1 by rescaling. The
Gauss–Weingarten equations imply the Lund–Regge equation
r

xy

= r

x

⇥ r

y

.

Translation surfaces. If ↵ = � = 0, � 6= 0, then condition
↵K + �G + � = 0 yields G = h12 = 0 and r

xy

= 0. Consequently,
we recover the well-known class of translation surfaces.
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Surfaces of constant Gaussian curvature.

If � = 0, then condition ↵K + �G + � = 0 means that K is a
constant. An example is provided by an arbitrary surface of
constant Gaussian curvature equipped with an arbitrary (local)
Chebyshev net.

Double constant curvature case. Following Hazzidakis, the
Chebyshev net on a pseudospherical surface can be chosen to be
asymptotic, i.e., h11 = h22 = 0. Then, by GMC equations, G = h12

is constant and ' satisfies the sine–Gordon equation. Both K and
G are constant. Moreover, K = �G

2.

Here is the converse statement:
Proposition 1. Let K and G be constant, let K + G

2 = 0. Then

either K = G = 0 or h11 = h22 = 0. Consequently, the Chebyshev

net is either planar or asymptotic, according to whether K = 0 or

not.
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The zero curvature representation

As we have seen in the previous section, the cases of ↵ = 0 or � = 0
have been understood rather well. Therefore, we assume that
↵ 6= 0 6= � in what follows. Moreover, we set

↵ = 1

for the sake of simplicity.

The Gauss–Weingarten system induces an so(3)-valued zero
curvature representation of the Gauss–Mainardi–Codazzi system.
Choose the orthonormal frame p,q,n, where n is the unit normal
vector and p,q are the unit vectors along the bisector lines
x + y = const, x� y = const, respectively. Then

p =
1
2

r

x

+ r

y

cos 1
2 '

, q =
1
2

r

x

� r

y

sin 1
2 '

.
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x

=
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�A13 �A23 0

1

A

0
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p

q
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0
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p

q

n
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A

y

=

0

@
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1

A

0

@
p

q

n

1

A

we easily get

A12 = 1
2 '

x

, B12 = � 1
2 '

y

,

A13 = (
h11 + h12) sin 1

2 ', B13 = (
h12 + h22) sin 1

2 ',

A23 = (
h11 � h12) cos 1

2 ', B23 = (
h12 � h22) cos 1

2 '.

(1)

It follows that A, B take values in so(3) and the zero curvature
condition D

y

A�D

x

B + [A, B] = 0 holds as a consequence of the
Gauss–Mainardi–Codazzi system.
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Let � be a parameter, let ⇤±denote the two solutions of the system

⇤+ + ⇤� =
�

�

(1� �

2)
, ⇤+⇤� = �

(1� �

2)
.

Then so(3) matrices A, B such that

A12 = 1
2 '

x

, B12 = � 1
2 '

y

,

A13 = (
�h11 + �h12 + ⇤�) sin

'

2
, B13 = (

�h12 + �h22 + ⇤+) sin
'

2
,

A23 = (
�h11 � �h12 � ⇤�) cos

'

2
, B23 = (

�h12 � �h22 + ⇤+) cos
'

2

satisfy D

y

A�D

x

B + [A, B] = 0 and, therefore, constitute a zero
curvature representation depending on the spectral parameter�.
When � = ±1, we obtain the matrices A, B we started with.

Everything is easily translated to su(2) and sl(2, C).

It is easy to see that the parameter is not removable by a gauge
transformation.
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The spectral curve

The spectral parameter runs over the elliptic curve

w

2 = (
�

2 + 4�

)
z

4 � 2(
�

2 + 2�

)
z

2 + �

2
.

In two special cases the spectral curve is of genus 0.

When � = 0, the curve degenerates to the pair of quadrics
w

2 = �

2(z2 � 1)2 and

⇤± = 0, ⇤⌥ =
�

�

(1� �

2)
,

where either upper signs or lower signs are to be used.

When �

2 + 4� = 0, the curve degenerates to the quadric
w

2 = �2(�2 + 2�)z2 + �

2 and the substitution

� = � 2�µ

µ

2 + �

2 , ⇤� =
�

2

2µ

µ

2 � �

2

µ

2 + �

2 , ⇤+ = �µ

2
µ

2 � �

2

µ

2 + �

2

provides a rational parameterization by µ.
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Curvature proportional nets

Consider the case of � = 0, ↵� 6= 0. The two curvatures Kand G

are proportional. The nets satisfying K = �G will be called
curvature proportional nets.

As we have seen, the spectral curve degenerates to genus 0.

Incidentally, � = 0 is the only case when there exists a vectorial
potential. Define m by the compatible equations

m

x

= (
h12 � �

)
r

x

� h11 r

y

,

m

y

= h22 r

x

+ (
� � h12) ry

.

Remark. By a straightforward computation, m

xy

· n = 0.
Therefore, m(x, y) is a conjugate net. This provides us with a link
to another extensively studied class of nets, but m(x, y) does not
seem to fall into any class that have been actually studied.
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The associated pseudospherical surfaces

Define surfaces S

+, S

� by the position vectors

r

+ = m + �r, r

� = m� �r.

Proposition 2. The associated surfaces S

+
, S

�
are of the Gauss

curvature �1, i.e., pseudospherical.

As the next step, we equip the surfaces S

+, S

� with the
asymptotic Chebyshev coordinates ⇠

±
, ⌘

±. The angle �

±(⇠±, ⌘

±)
between the coordinate lines satisfies the sine-Gordon equation.
Proposition 3. Every solution ', h

ij

of the GMC system with

� = 0 induces two sine-Gordon solutions, i.e., functions �

±(⇠±, ⌘

±)
such that

�

±
⇠

±
⌘

± = sin�

±
.

Explicit formulas are rather huge, hence omitted.
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Peculiarities

We obtain a scheme of coverings

GMC
. &

sG sG

resembling that of the Bäcklund transformation between
pseudospherical surfaces. However, the coverings are
infinite-dimensional and cannot be reduced to finite-dimensional
ones. Hence, the BT is di↵erent from the classical one and,
moreover, useless for breeding the sine-Gordon solutions.

Given a solution of the sine-Gordon equation (or a pseudospherical
surface), we cannot recover the covering solution of the GMC
system (or the corresponding curvature proportional net) unless by
solving a complicated non-overdetermined nonlinear system of
partial di↵erential equations.
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Remark.

The two coverings are not completely useless. For instance, we can
lift the conservation laws from the sine-Gordon to the GMC system.

The standard zero curvature representation of the sine-Gordon
equation is lifted to the zero curvature representation of the GMC
system shown above, as expected.

Moreover, the covering allows us to transform easily curvature
proportional nets, if we knew any, to pseudospherical surfaces. So
far we have only been able to obtain rotational curvature
proportional nets in terms of hyperelliptic functions (jointly with
P. Blaschke). Had we have more time, we would have written down
the corresponding sine-Gordon solutions.
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