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Introduction

Around 1970, soliton theory started, bringing new powerful
integration methods for nonlinear PDE.

Open question. Which equations are integrable in the sense of
soliton theory?

Up to now, indirect approaches have been the most successful

– singularity analysis;

– symmetry analysis.

However, the majority of classification problems in differential
geometry appear to be beyond the scope of these methods.
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Integrability criterion

Existence of a zero curvature representation depending on a
nonremovable (spectral) parameter.

Given a system E of PDE in independent variables x, y, a Lie
algebra g, a g-valued zero curvature representation for E is a form
α = Adx+B dy with A,B ∈ g such that

DyA−DxB + [A,B] = 0

as a consequence of the system E.

Applications
– Zakharov–Shabat formulation of the inverse spectral transform,
– starting point to obtain explicit solutions,
– Bäcklund/Darboux transformations,
– nonlocal symmetries,
– recursion operators and hierarchies of symmetries.
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Example

The mKdV equation ut + uxxx − 6u2ux = 0 has an sl2-valued zero
curvature representation Adx+B dt with

A =
(
u λ

1 −u

)
,

B =
(
−uxx + 2u3 − 4λu 2λux + 2λu2 − 4λ2

−2ux + 2u2 − 4λ uxx − 2u3 + 4λu

)
.

Indeed, Dt(A)−Dx(B) + [A,B] = (ut + uxxx − 6u2ux) · C, where

C =
(

1 0
0 −1

)
.

Here λ is a parameter (the spectral parameter).
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The problem

How to tell whether a given nonlinear system has a zero curvature
representation?

The famous Wahlquist–Estabrook method

– algorithmizable under favourable conditions,

– usually not the case with serious classification problems.
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The method used

Resources:

M.M., On zero curvature representations of partial differential equations,

in: Differential Geometry and Its Applications, Proc. Conf. Opava,

Czechoslovakia, Aug. 2428, 1992 (Silesian University, Opava, (1993)

103122.

M.M., A direct procedure to compute zero-curvature representations.

The case sl2, in: Secondary Calculus and Cohomological Physics, Proc.

Conf. Moscow, 1997 (ELibEMS, 1998) pp. 10.

P. Sebestyén, Normal forms of irreducible sl3-valued zero curvature

representations, Rep. Math. Phys 55 (2005) No. 3, 435–445.

P. Sebestyén, On normal forms of irreducible sln-valued zero curvature

representations, Rep. Math. Phys 62 (2008) No. 1.
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Overview

Supposing A,B,Cl to be in a normal form, the determining system

(DyA−DxB + [A,B])|E = 0,∑
I,l

(−D̂D)I

(
∂F l

∂ukI
Cl

)∣∣∣∣
E

= 0

has the following properties:

– is a system of differential equations in total derivatives;

– has the same number of unknowns as equations;

– is quasilinear in A,B and linear in Cl;

– impossible to solve without computer algebra;

– solution algorithms are resource demanding;

– tractable if A,B,Cl in a semisimple Lie algebra.
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One successful example

M.M., Scalar second order evolution equations possessing an irreducible

sl2-valued zero curvature representation, J. Phys. A: Math. Gen. 35

(2002) 9431–9439.

Negatives of the method

– the calculations tend to be prohibitively resource-demanding;

– one-parametric families of zero curvature representations,
which are characteristic of integrability, have to be selected
from the vast corpus of calculation results.

Fortunately, helps to solve an important subproblem.
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The spectral parameter problem

M.M., On the spectral parameter problem, Acta Appl. Math., DOI

10.1007/s10440-009-9450-4.

Question. When a given zero curvature representation can be
incorporated into a one-parameter family?

Warning. The family can exist only in a larger Lie algebra.

The method to solve the problem in a given Lie algebra:

1) compute cohomological obstructions, obtained when expanding
the zero curvature representation in terms of the (prospective)
spectral parameter;

2) use the information obtained in the first step to cut off
branches when computing the full zero curvature representation.
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Cutting off branches Image courtesy of Jǐŕı Škarda

10



The integrable surfaces problem

Surfaces correspond to solutions of the Gauss–Mainardi–Codazzi
equations (up to rigid motions).

Example. Pseudospherical surfaces ↔ sine-Gordon equation.

A. Sym, Soliton surfaces and their applications. Soliton geometry from

spectral problems, in: R. Martini, ed., Geometric Aspects of the Einstein

Equations and Integrable Systems, Lecture Notes in Physics 239

(Springer, Berlin, 1985) 154–231.

To start with, we focus on Weingarten surfaces, i.e., immersed
surfaces in E3 with a functional relation between the principal
curvatures k1, k2.

Example. All rotation surfaces; constant Gaussian curvature
surfaces; constant mean curvature surfaces.

Problem. Which functional relations f(k1, k2) = 0 determine an
integrable class of Weingarten surfaces?
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The Finkel–Wu conjecture

A well-known answer: Any linear relation between the mean
curvature 1

2 (k1 + k2) and the Gauss curvature k1k2:

ak1k2 + b(k1 + k2) + c = 0

determines an integrable class (linear Weingarten surfaces).

Conjecture. The only class of integrable Weingarten surfaces are
the linear Weingarten surfaces.

F. Finkel, On the integrability of Weingarten surfaces, in: A. Coley et al.,

ed., Bäcklund and Darboux Transformations. The Geometry of Solitons,

AARMS-CRM Workshop, June 4-9, 1999, Halifax, N.S., Canada, (Amer.

Math. Soc., Providence, 2001) 199–205.

Hongyou Wu, Weingarten surfaces and nonlinear partial differential

equations, Ann. Global Anal. Geom. 11 (1993) 49–64.
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Preliminaries

Parameterized by the lines of curvature, surfaces r(x, y) have the
fundamental forms

I = u2 dx2 + v2 dy2, II =
u2

ρ
dx2 +

v2

σ
dy2.

where ρ, σ are the principal radii of curvature.

In the Weingarten case, ρ = ρ(σ), the Mainardi–Codazzi subsystem
can be explicitly solved. The full GMC system then reduces to the
Gauss equation alone.

Moreover, the Gauss equation can be written in the form

Rxx + Syy + T = 0,

where R,S, T are functions of σ.
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A non-parametric zero curvature representation

The Gauss–Mainardi–Codazzi equations always posses a
non-parametric zero curvature representation

A0 =


iuy
2v

− u

2ρ
u

2ρ
− iuy

2v

, B0 =

− ivx
2u

− iv
2σ

− iv
2σ

ivx
2u


(x, y label the lines of curvature).

Question. Can we incorporate a parameter?

Answer. No, unless we impose a suitable additional condition.

Problem. Which geometric conditions imply integrability?
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Results of the computation

Weingarten surfaces determined by an explicit dependence ρ(σ)
possess a one-parametric zero curvature representation if and only
if the determining equation

ρ′′′ =
3

2ρ′
ρ′′2 +

ρ′ − 1
ρ− σ

ρ′′ + 2
(ρ′ − 1)ρ′(ρ′ + 1)

(ρ− σ)2

holds (the prime denotes d/dσ).

This equation has

– a general solution in terms of elliptic integrals;

– a number of special solutions when the relation between ρ and
σ can be expressed in terms of elementary functions.

Surprise. All the special cases were known in the XIX century.

Corollary. The Finkel–Wu conjecture is false.
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Summary of special cases

up to scaling and offsetting; ρ, σ are the principal radii of curvature.

relation integrable equation
ρ+ σ = 0 zxx + zyy + ez = 0
ρσ = 1 zxx + zyy − sinh z = 0
ρσ = −1 zxx − zyy + sin z = 0
ρ− σ = sinh(ρ+ σ) (tanh z − z)xx + (coth z − z)yy + csch 2z = 0
ρ− σ = sin(ρ+ σ) (tan z − z)xx + (cot z + z)yy + csc 2z = 0
ρ− σ = 1 zxx + (1/z)yy + 2 = 0
ρ− σ = tanh ρ 1

4
(sinh z − z)xx + (coth 1

2 z)yy + coth 1
2 z = 0

ρ− σ = tan ρ 1
4

(sin z − z)xx + (cot 1
2 z)yy + cot 1

2 z = 0
ρ− σ = coth ρ 1

4
(sinh z + z)xx − (tanh 1

2 z)yy + tanh 1
2 z = 0

ρ− σ = − cot ρ 1
4

(sin z + z)xx + (tan 1
2 z)yy + tan 1

2 z = 0
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Surfaces of constant astigmatism

The relation ρ− σ = const was among the special solutions.

H. Baran and M.M., On integrability of Weingarten surfaces: a forgotten

class, J. Phys. A: Math. Theor. 42 (2009) 404007.

Popular among nineteenth-century geometers:

A. Ribaucour, Note sur les développées des surfaces, C. R. Acad. Sci.

Paris 74 (1872) 1399–1403.

A. Mannheim, Sur les surfaces dont les rayons de courbure principaux

sont fonctions l’un de l’autre, Bull. S.M.F. 5 (1877) 163–166.

R. Lipschitz, Zur Theorie der krummen Oberflächen, Acta Math. 10

(1887) 131–136.

R. von Lilienthal, Bemerkung über diejenigen Flächen bei denen die

Differenz der Hauptkrümmungsradien constant ist, Acta Math. 11 (1887)

391–394.
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Astigmatism

A general reflecting or refracting surface exhibits two focuses in
perpendicular directions at distances equal to ρ and σ.

Tallfred, http://en.wikipedia.org/wiki/Astigmatism (eye)

The difference ρ− σ is known as the interval of Sturm or the
astigmatic interval or the amplitude of astigmatism or the
astigmatism.
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The constant astigmatism equation

The astigmatic interval can be always reduced to 1 by rescaling the
ambient metric. In the case of ρ− σ = 1, the Gauss equation can be
put in the form

zyy +
(

1
z

)
xx

+ 2 = 0,

which we propose to call the constant astigmatism equation.

The equation has obvious translational symmetries
(reparameterization) ∂x, ∂y, the scaling symmetry (offsetting)

2z
∂

∂z
− x ∂

∂x
+ y

∂

∂y
,

and a discrete symmetry (swapping the orientation & taking the
parallel surface at the unit distance)

x −→ y, y −→ x, z −→ 1
z
.

19



Two third-order symmetries

One of them has the generator

z3

K3 (zxxx − zzxxy)

− 3
K5 z

3(zx − zzy)(zxx − zzxy)2 − 2
K5 z

5(9zx − zzy)zxx

+
1

2K5 z
2(9z2

x + 4zzxzy − z2z2
y)(zx − zzy)zxx

− 2
K5 z

3zx(zx − zzy)(4zx − zzy)zxy +
4
K5 z

6zxzxy

+
3
K5 z

4(5zx − zzy)z2
x −

3
K5 z(zx − zzy)z4

x,

where K =
√

(zx − zzy)2 + 4z3 .

The other symmetry is obtained by conjugation with the discrete
symmetry above.
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A recursion operator

due to A. Sergyeyev (private communication).

If Z is a generating function of a symmetry, then so is

Z ′ = −zyU + zxV + 2zW,

where U, V,W satisfy

DxU = Z, DxV = W, DxW = DyZ,

DyU = W, DyV =
Z

z2 , DyW = Dx
Z

z2 .

In the pseudodifferential form:

Z ′ = −zyD−1
x + zxD

−2
x Dy + 2zD−1

x Dy.

Takes local symmetries to nonlocal ones.
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Relation to the sine–Gordon equation

A. Ribaucour, Note sur les développées des surfaces, C. R. Acad. Sci.

Paris 74 (1872) 1399–1403.

The focal surfaces of surfaces satisfying ρ− σ = const are
pseudospherical. Hence a relation to the sine-Gordon equation.

Let w = 1
2 ln z. Determine function φ′ and coordinates ξ, η from

cosφ′ =
w2
x − e2w − e4ww2

y√
(wx + e2wwy)2 + e2w

√
(wx − e2wwy)2 + e2w

,

sinφ′ = − 2ewwx√
(wx + e2wwy)2 + e2w

√
(wx − e2wwy)2 + e2w

,

dξ = 1
2

√
(wx + e2wwy)2 + e2w dx+ 1

2

√
(e−2wwx + wy)2 + e−2w dy,

dη = 1
2

√
(wx − e2wwy)2 + e2w dx− 1

2

√
(e−2wwx − wy)2 + e−2w dy.

Then φ′(ξ, η) is a solution to the sine-Gordon equation φξη = sinφ.

22



The Bianchi transformation

Another solution of the sine-Gordon equation can be obtained from
the other focal surface.

The two focal surfaces are related by the classical Bianchi
transformation:

– Corresponding points have a constant distance equal to ρ− σ;

– Corresponding normals are orthogonal;

– The line joining the corresponding points is tangent to both
focal surfaces.

The Bianchi transformation is, however, superseded by the classical
Bäcklund transformation, where the condition on the angle
between the normals is relaxed from being right to being constant.

This probably explains why surfaces of constant curvature fell into
oblivion.
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Inverse relation to the sine–Gordon equation

An arbitrary pseudospherical surface can be equipped with a
parabolic geodesic net. Involutes of the geodesics along the same
starting line form a surface of constant astigmatism.

Let φ(ξ, η) be a solution of the sine-Gordon equation φξη = sinφ.
Let α, β be solutions of the compatible equations

βξ = − sinα, αη = − sinβ, α− β = φ.

Compute functions X,x, y from

dX = cosαdξ + cosβ dη,

dx = e−X(sinαdξ + sinβ dη),

dy = eX(sinαdξ + sinβ dη).

Then e−2X(x,y) is a solution of the constant astigmatism equation.
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Von Lilienthal surfaces

R. von Lilienthal, Bemerkung über diejenigen Flächen bei denen die

Differenz der Hauptkrümmungsradien constant ist, Acta Math. 11 (1887)

391–394.

A special case of the Lipschitz solution

R. Lipschitz, Zur Theorie der krummen Oberflächen, Acta Math. 10

(1887) 131–136.

Von Lilienthal surfaces are (made of) involutes (of meridians) of
the pseudosphere (starting at the same ‘parallel’).

The pseudosphere itself is the involute of the catenoid.

All they are rotation surfaces:

– Catenoid = rotation of the catenary.

– Pseudosphere = rotation of the tractrix.

– Von Lilienthal surfaces = see the picture.
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Weingarten’s ‘new class of surfaces’

Surfaces satisfying relation ρ− σ = sin(ρ+ σ).

J. Weingarten, Über die Oberflächen, für welche einer der beiden

Hauptkrümmungshalbmesser eine function des anderen ist, J. Reine

Angew. Math. 62 (1863) 160–173.

Covered in §§ 745, 746, 766, 769, 770 of

G. Darboux, “Leçons sur la théorie générale des surface et les

applications géométriques du calcul infinitésimal,” Vol. I–IV.

and §§ 135, 245, 246 of

L. Bianchi, “Lezioni di Geometria Differenziale,” Vol. I, II.

Darboux gave a general solution of the associated equation
(tan z − z)xx + (cot z + z)yy + csc 2z = 0. He also gave a remarkable
geometric construction, further developed by Bianchi.
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Darboux correspondence

Darboux discovered a relationship with translation surfaces.

A translation surface is a surface that admits a parameterization
r̃r(ξ, η) such that

r̃rξη = 0.

Equivalently, r̃r(ξ, η) = r̃r1(ξ) + r̃r2(η). The curves r̃r1(ξ) and r̃r2(η)
are called the generating curves.

Otherwise said, a translation surface is obtained when translating a
curve along another curve. Translation surfaces are manifestly
integrable.

Bianchi observed that the translation surface in question is the
middle evolute, which consists of mid-points between the two focal
surfaces.
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Darboux–Bianchi theorem I

Proposition. Let r be a Weingarten surface, let ξ, η be the
common asymptotic coordinates of its focal surfaces. Then

(i) the coordinates ξ, η render the middle evolute r̃r as a
translation surface, i.e., r̃r(ξ, η) = r̃r1(ξ) + r̃r2(η);

(ii) the generating curves r̃r1, r̃r2 have opposite nonzero constant
torsion;

(iii) the normal vector n to the surface r at a point belongs to the
intersection of the osculating planes of the generating curves
r̃r1, r̃r2 through the corresponding point.
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Darboux–Bianchi theorem II

Proposition. Let s(ξ, η) = s1(ξ) + s2(η) be a nonplanar
translation surface. Assume that the generating curves s1(ξ) and
s2(η) are of opposite nonzero constant torsion τ and −τ ,
respectively. Denote by b1 and b2 the respective binormal vectors
of the generating curves s1(ξ) and s2(η) and by Θ = arccos(b1,b2)
the angle between them, 0 < Θ < π. Then the surface

r = s +
Θ + c0
τ sin Θ

b1 × b2

satisfies Weingarten’s relation

ρ− σ
c1

= sin
(
ρ+ σ

c1
− c0

)
. (1)

with c1 = 2/τ .
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Invariant characterization

Proposition. Consider a Weingarten surface which is not a
sphere. Hence, the focal surfaces r(1), r(2) satisfy det II(1) 6= 0,
det II(2) 6= 0. Let ĨIII denote the second fundamental form of the
middle evolute r̃r. Then the following statements are equivalent:

(i) surface belongs to the ‘new Weingarten class’;

(ii) tr(II(1)−1 ĨIII) = 0;

(iii) tr(II(2)−1 ĨIII) = 0;

(iv) n(2) ·∆(2)
II r(1) = n(1) ·∆(1)

II r(2), where ∆(1)
II and ∆(2)

II are the
Laplace–Beltrami operators with respect to II(1) and II(2).

Remark. The normal components n(1) ·∆(1)
II r(1), n(2) ·∆(2)

II r(2)

are constant and equal to 2.

S. Haesen, S. Verpoort and L. Verstraelen, The mean curvature of the

second fundamental form, Houston J. Math.
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