
Diffeological differential geometry.
Thesis for the Master degree in Mathematics.

Department of Mathematical Sciences, University of

Copenhagen.

Supervisor: Wahl, Nathalie

Martin Vincent
Email: vincent@stud.ku.dk

May 28, 2008



Abstract

The main objective for this thesis is the construction of a tensor bundle on a
diffeological space X. Thereby getting access to the exterior bundle of anti-
symmetric tensors on X, and smooth sections here on i.e. differential forms.
We shall list certain requirements that any reasonable tensor bundle on a dif-
feological space should fulfil. And show that the given construction fulfil these
requirements. The main idea of the approach taken in this thesis is to asso-
ciate to each smooth curve α : R → X a map dα : C∞(X) → R defined by
dα(f) := d0(f ◦ α) (where d0 denotes differentiation at 0). This leads to rea-
sonable tangent spaces, tangent bundles, tensor bundles and finally differential
forms. These differential forms will in a natural way be D-forms. In order to
archive the main objective we shall also need to develop some theory concerning
diffeological bundles, and vector bundles.



Abstract

Det primær m̊al i dette speciale er, at konstruer et tensor bundt p̊a et diffeol-
ogisk rum X. Og derigemmen at studere differentialeformer p̊a X. Vi sætter
en række krav op et rimeligt defineret tensor bundt bør opfylde, og viser at
det konstruerede tensor bundt opfylder disse krav. Den grundlæggende ide i
konstruktion er, at associer til en hver glat kurve α : R → X en afbildning
dα : C∞(X)→ R defineret ved dα(f) := d0(f ◦α) (hvor d0 betegner differentia-
tion i 0). Dette leder til rimelige tangent rum, tangent bundter, tensor bundter
og differentialeformer. Disse differentialeformer er p̊a en naturlig m̊ade D- dif-
ferentialeformer. For at n̊a det primær m̊al er det nødvendigt ogs̊a at studer
diffeologiske bundter og vektor bundter.
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Introduction

The theory of diffeological spaces tries to capture the essence of smooth spaces,
it generalizes smooth manifolds. It is fair to say, that the theory of diffeological
spaces, is an attempt at construeting a theory in which all kind of smooth
surfaces can be studied, including singular surfaces, infinite dimensional smooth
spaces and functional spaces.

The main objective for this thesis is the construction of a k-tensor bundle
T k(X) on a diffeological space X. Thereby getting access to the exterior bun-
dle Λk(X) of antisymmetric k-tensors on X, and smooth sections here on i.e.
differential forms. We shall list certain requirements that any reasonable tensor
bundle on a diffeological space should fulfil. And show that our construction
fulfil these requirements. We shall however not discuss, in detail, the uniqueness
of the constructions. Although it will be clear that, many of, the constructions
involved have certain uniqueness properties in relation to these requirements.

It is worth noticing that there is a short cut to defining differential forms
on diffeological spaces, these forms are called D-forms. D-forms can be defined
without first defining a tensor bundle, a tangent bundle and a tangent space.
The traditional approach in diffeology is to define tangent spaces as induced by
D-forms. The approach we shall take in this thesis is different, it is inspired
by a more traditional approach, as taken in finite dimensional locally euclidean
differential geometry . Hence our line of construction will be

tangent vector→ tangent space→ tangent bundle→ tensor bundle.

Furthermore smooth sections of Λk(X) will in a natural way be D-forms. In
fact any reasonable construction of a tensor bundle will admit differential forms
which are D-forms, in a natural way.

Due to the richness and complex nature of diffeological spaces the problem
of constructing a suitable tensor bundle on a diffeological space is not a trivial
one. Before we go into more details on the objectives and approaches to the
problems taken in this thesis, we shall introduce the category of diffeological
spaces.

The category
An early version of diffeological spaces, now usually called Chen spaces, was in-
troduced by Chen in Chen [1977] under the name differentiable spaces. We shall
in this thesis use a slightly different notion, namely that of diffeological space
as introduced in Souriau [1980]. Other more or less similar approaches includes
Frölicher spaces and Sikorski’s differential spaces (among physicists generally
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called d-spaces). For a short introduction to Frölicher spaces see chapter V of
Kriegl and Michor [1997], an introduction to Sikorski’s differential spaces can
for example be found in Gruszczak et al. [1988]. The category of Frölicher space
is a full subcategory of the category of diffeological spaces, in Vincent [2008] we
discuss this relation further.

Iglesias-Zemmour has done a great deal of work relating to the theory of
diffeology, a review of diffeology and an introduction to D-forms may be found
in Iglesias-Zemmour [2007c]. There are also some interesting unpublished work,
in particular the unfinished book Iglesias-Zemmour [2007b].

Applications of diffeology. In Souriau [1980] the axioms of diffeology is for-
mulated, as a part of an attempt at formalizing quantum mechanics. Further-
more physicists have used, the related, Sikorski’s differential spaces in attempts
to model the physical space time. But there are today, it seems, still no success-
ful and important application of diffeology, or related theories. However a well
established theory of smooth spaces able to handle singularities and functional
spaces would be of interest, and could have many applications.

We shall not discuss applications of diffeology, and related theories, any
further. We shall however, throughout the thesis, illustrate the theory with
examples of the studied constructions.

The idea of diffeological spaces is to define the structure on a space by
specifying the collection of, what will be, diffeologically smooth maps into the
space and having domains in OR∞. By OR∞ we mean the category with objects
open subsets of euclidean spaces, and morphism usual smooth maps. Let us
consider a collection Ω of maps into a set X, having there domain in OR∞.
What should we require for such a collection in order to justify calling the
structure defined by Ω, a smooth structure. The following three axioms are
reasonable to require (we shall state these precisely in section 1.1.1)

(1) Every constant map is smooth, i.e. is an element of Ω.

(2) If α ∈ Ω and h is a usual smooth map composable with α then α ◦ h ∈ Ω.

(3) Smoothness is a local property.

Given a collection DX fulfilling the three axioms above we say that DX is a
diffeology on X, and call the elements of DX plots. A set X equipped with a
diffeology DX is then said to be a diffeological space. The notation of smooth
maps between diffeological spaces X and Y is natural, as we simply require
that composition of smooth maps must be smooth. Hence we say that a map
f : Y → X is smooth if for every plot α on Y the composition f ◦α is a plot for
X, see fig. 1. Notice that this implies that plots are exactly smooth maps with
domain in OR∞.
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Figure 1: A smooth map f : Y → X.

Categorical properties. The collection of diffeological spaces form a cate-
gory, with morphisms smooth maps. The category of diffeological spaces is a
nice category, below is listed some of its properties;

· It is complete and cocomplete, i.e. it has all limits and colimits. In par-
ticular we may form products, coproducts (disjoint union), equalizers and
coequalizers, pushouts and pullbacks. Furthermore these limits behave
nicely with respect to the category of sets (Set), as the forgetfull functor
Dif - Set preserves limits and colimits.

· The collection of smooth maps C∞(X,Y ) between diffeological spaces
have a natural smooth structure as a diffeological space, the functional
diffeology. And the category of diffeological spaces is cartesian closed,
that is there is a natural diffeomorphism

C∞(X × Y,Z) ' C∞(X,C∞(Y, Z)).

· Every subset of a diffeological space has a natural subspace diffeology.
Every quotient (given by a equivalence relation on the set) of a diffeological
space has a natural quotient diffeology.

· Every diffeological space can be given a natural topology, given this topol-
ogy all smooth maps are continuous.

· Finite dimensional manifolds (with or without boundary) are diffeologi-
cal spaces, and smooth maps between these are precisely those that are
smooth in the usual sense. In other words the category of finite dimen-
sional manifolds with boundary is a full subcategory of Dif.

It has be said that the philosophy is that, it is better to have a nice category
containing some pathological spaces, than a ugly category of nice spaces.
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Objectives and organization of the thesis
We shall in this thesis mainly study the differential geometric properties of
diffeological spaces. We shall in particular construct tangent spaces, tangent
bundles and tensor bundles on diffeological spaces. The final goal is to con-
struct a sensible tensor bundle, whereby we shall mean a tensor bundle fulfilling
the requirements listed below. Note that we do not claim that this list is com-
plete, in any way, the investigation of this would require further study. See
also chapter VII of Kriegl and Michor [1997] in which different approaches in
defining differential forms on infinite dimensional smooth space are carefully
and detailed studied. However in a different setting than diffeology, namely
infinite dimensional manifolds modelled on locally convex vector spaces. In fact
the approach we shall take in defining tensor bundles is partly inspired by their
conclusions.

The constructed tensor bundle T k(X) should fulfil the following require-
ments:

(a) The fiber over x ∈ X should be diffeomorphic with the vector space con-
sisting of smooth multilinear maps

TxX × · · · × TxX → R.

(b) If U ∈ OR∞ then the set of smooth sections Γ(T k(U)) on T k(U) (tensor
fields) should consist of all smooth functions

φ : U × Rn × · · · × Rn︸ ︷︷ ︸
k copies

→ R

with φ(u) multilinear for each u ∈ U .

(c) Each smooth map φ : X → Y should induce a pullback

φ∗ : Γ(T k(Y ))→ Γ(T k(X))

of tensor fields. And for euclidean spaces this pullback should be the usual
one.

(d) Given k vector fields V1, . . . , Vk on X and a tensor field T , the map

x→ T (x)(V1(x), . . . , Vk(x))

should be smooth.

In order to reach this objective we shall need to construct tangent spaces
and tangent bundles. Furthermore we will need to study diffeological vector
spaces, diffeological bundles and vector bundles.

As we shall discuss a bit further in chapter 6 (b) and (c) above implies that
differential forms, related to the tensor bundle, are in a natural way D-forms.
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In chapter 1 we introduce the category of diffeological spaces. The chapter
contains several examples of diffeological spaces, and discuss smooth maps here
on. We shall, in this chapter, omit most of the proofs as they can be found other
places for example Iglesias-Zemmour [2007b] or Vincent [2008]. Note however
that some might only be found in Vincent [2008], and proof for all statements
without proof may be found herein. Note also that examples 9 to 11 and 13 are
new.

In section 1.4 we state some few simple observations concerning diffeological
products. Most of these might be found other places as well, we shall, however,
include the proofs.

In section 1.7 we introduce the functional diffeology, and prove the cartesian
closure of the category of diffeological spaces. This will be important for the
constructions dealt with in this thesis. Except for the examples we shall follow
more or less Laubinger [2006].

In chapter 2 we introduce the notion of diffeological vector spaces, as intro-
duced in Iglesias-Zemmour [2007c]. In section 2.1 we follow Iglesias-Zemmour
[2007c], in section 2.2 we generalize the fine diffeology for vector spaces, as found
in Iglesias-Zemmour [2007c]. Section 2.3 is new, and my own work. Section 2.4
only contains simple observations.

In chapter 3 we construct tangent spaces for a diffeological space. This has
been done before, but the approach we shall taken in this thesis is different.
In Laubinger [2006] tangent spaces are constructed as certain co-limits in the
category of vector spaces. Some short notes on how to construct tangent spaces
induced by D-forms can be found in the, still unfinished, book Iglesias-Zemmour
[2007b]. The main idea of the approach taken in this thesis is to associate to
each smooth curve α : R→ X a map dα : C∞(X)→ R defined by

dα(f) := d0(f ◦ α),

(where d0 denotes differentiation at 0). As wee shall see in chapter 3 this leads
to reasonable tangent spaces, and furthermore the idea is relatively simple and
intuitive, having in mind the usual definition of tangent vectors, on a finite
dimensional manifolds M , as derivations on C∞(M). In fact the maps dα are
smooth derivations.

In chapters 4 and 5 we introduce the notion of diffeological bundles and
diffeological vector bundles. We need to study bundle structures in order to
reach our objective of constructing a tangent bundle and a tensor bundle. The
richness of the category of diffeological spaces, hence the possible high complex-
ity of a diffeological space, implies high complexity of the tangent bundle. We
therefore need a fairly broad notion of bundles. In fact fairly simple examples
will show us that we need to deal with bundles which are not locally trivial.

In chapter 4 we introduce general diffeological bundles, which is a gener-
alization of the concept found in Iglesias-Zemmour [2007c]. In chapter 5 we
introduce diffeological vector bundles, as well as construction involving these.

Finally in chapter 6 we utilize the theory developed in chapters 4 and 5
in order to construct, and study, our tangent bundle, and tensor bundle. We
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shall in particular show that the constructed tensor bundle fulfills the regiments
(a)-(d) as listed above.

Chapters 3 to 6 are new, and my own work. The ideas for the constructions
involved are mainly inspired by, but not equal to, constructions found Kriegl
and Michor [1997], Iglesias-Zemmour [2007c], Warner [1971] among others.



Chapter 1

A review of the theory of
diffeological spaces

This chapter contains a review, mainly without proofs, of the theory of diffeo-
logical spaces. Proofs for the statements may for example be found in Iglesias-
Zemmour [2007b] or Vincent [2008], or in any other text on diffeology.

In section 1.1 we introduce the category of diffeological spaces, and give some
examples. In section 1.2 we introduce the concepts of generating diffeology.
The lattice structure of lattice consisting of diffeologies on a set is studied in
section 1.3. Product and co-products in section 1.4. In section 1.5 we collect
a few result relating to diffeomorphisms between diffeological spaces. Each
diffeological space carries a natural topology, the D-topology, we introduce it
in section 1.6. The functional diffeology will be important for the work done
in this thesis, we shall therefore give the full proof of all statements relating
to this. The functional diffeology will be introduced in section 1.7. Finally in
section 1.8 we study a few examples.

1.1 The category of diffeological spaces
In this section, the axioms of diffeology will be given, thereby defining diffeo-
logical spaces. The concept of smooth maps between diffeological spaces, will
be defined. And we shall see that the collection of diffeological spaces forms a
category with morphisms smooth maps. The definitions will be followed up by
examples, many of which we shall use later to illustrate points of the theory.

1.1.1 The axioms of diffeology

Let in the following X denote a set. A diffeology on X is a collection of certain
maps into X, in order for this collection to be a diffeology 3 axioms must hold,
covering, smoothness and locality. We may think of a diffeology on X as the
collection of all smooth maps into X, with domains objects of OR∞. Before
we give the exact statement of these axioms, we will need to define which types
of maps the diffeology is a collection of. We will therefore start by making the
following definitions;

Definition 1.1.1 By OR∞ we will denote the category with objects all open

9
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sets of any finite dimensional euclidean space, and morphisms smooth maps
between these open sets.

Note that
OR∞ is a small
category.

Note that we will write U ∈ OR∞, if U is a object of OR∞. And that we
will use this notation for any category.

Definition 1.1.2 A parametrization of X is any map into X with domain an
object of OR∞.

Note that
Par(X) is
indeed a set.

We will by Par(X) denote the set consisting of all parametrizations of X. If
a parametrization is a constant map, we will say that is a constant parametriza-
tion. Consider a subset Ω of Par(X). We shall say that Ω is a covering of X if
axiom 1 below holds.

Axiom 1 (Covering)
All constant parametrizations belongs to Ω.

In other words axiom 1 express that all constant maps into a diffeological
space are considered smooth. Before we state axiom 2 we need one further
definition;

Definition 1.1.3 Let α be any parametrization, and h any morphism in OR∞,
then h is said to be composable with α if Im(h) ⊆ Dom(α).

We will use the following notation;

G(α) := {α ◦ h | h any morphism in OR∞ composable with α}

Our second axiom stats that the composition of a diffeologically smooth map
with a usual smooth map (i.e a morphism in OR∞) is again a diffeologically
smooth map, to be exact we state the following;

Axiom 2 (Smoothness)
For any parametrization α in Ω it holds that G(α) ⊆ Ω.

A collection Ω of parametrization of X is said to be a smooth collection if
axiom 2 holds for all parametrizations of Ω. If we let G(Ω) := ∪α∈ΩG(α), then
a collection is smooth if and only if G(Ω) = Ω. Note also that G(Ω) is a smooth
collection. And if α ∈ G(Ω), then α|U ∈ G(Ω) for any open U ⊆ Dom(α).

Our last axiom states that diffeologically smoothness is a local property, in
order to state it we need the notion of locally belonging to as defined below.

Definition 1.1.4 We say that a parametrization U
α- X locally belongs to

Ω if there exist a open covering {Ui}i∈I of U such that α|Ui ∈ Ω for all i ∈ I.

We shall write α
loc
∈ Ω if α locally belongs to Ω, and write Ω

loc
⊆ Ω′ if

α ∈ Ω ⇒ α
loc
∈ Ω′. And say that a parametrization α is locally constant if

it locally belongs to the collection of constant parametrizations. As simple
consequences of definition 1.1.4 we get the following propositions;

Lemma 1.1.5 Let Ω and Ω′ be subsets of Par(X) then

(i) If Ω ⊆ Ω′ then α
loc
∈ Ω⇒ α

loc
∈ Ω′
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(ii) Ω
loc
⊆ Ω

and for a family {Ωi}i∈I of subsets of Par(X)

(iii) α
loc
∈ ∩i∈IΩi implies that α

loc
∈ Ωi for all i ∈ I.

Proof: The propositions are trivial consequences of the definition 1.1.4.

Axiom 3 is as follows;

Axiom 3 (Locality)
It holds that α

loc
∈ Ω⇒ α ∈ Ω.

A collection Ω of parametrization of X is said to be a local collection if
axiom 3 holds. We are now ready to give the definition of a diffeological space.
Our central definition, of this thesis, are as follows

Definition 1.1.6 A diffeology on a set X is a collection DX of parametrizations
of X (called plots) for which axioms 1 to 3 holds.

For a set X with a diffeology DX on it, we will use the notation (X,DX) or
just X or DX if the meaning is clear from the context. A set together with a
diffeology is called a diffeological space. Given two diffeologies D1 and D2 on
X with D1 ⊆ D2, we shall say that D1 is weaker than D2, or equivalent that
D2 is stronger than D1.

Next, we will need a concept of smooth maps between diffeological spaces.
but before we move on to this, we will look at some simple examples of diffeo-
logical spaces. Let us start with the simplest possible examples of diffeological
spaces on X;

A diffeological

space.Examples of diffeological spaces

Example 1 (The discrete and indiscrete diffeology)
The collection of all parametrizations of X which are locally constant is a dif-
feology on X, it will be denote by D◦X , this diffeology is called the discrete
diffeology. The collection of all parametrizations of X is also a diffeology, it will
be denoted by D•X and called the indiscrete diffeology. For any diffeology DX
on X evidently

D◦X ⊆ DX ⊆ D•X .

Example 2 (The canonical diffeology on R)
Let

DR :=
⋃

U∈OR∞
C∞(U,R)

clearly DR is a diffeology on R, it’s called the canonical diffeology on R. Now
for any object V of OR∞ we may define, as above, the canonical diffeology on
V , i.e we define

DV :=
⋃

U∈OR∞
C∞(U, V ).

Next let us look at the simplest singularity we can think of (beside an isolated
point);

a

b

c d0

The Cross
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Example 3 (A diffeology on the cross)
Consider the set

X :=
Rv
∐

Rh
0v ∼ 0h

this set will be called the cross (here
∐

denotes disjoint union, for convenience
we have labeled the copies of R). We shall here give two different diffeologies on
X , the line diffeology and the subspace diffeology. Later, in example 6, we will
see that the line diffeology is the natural diffeology on X if we think of X as
constructed by products and quotients. If we on the other hand consider X as a
subspace of the plan the subspace diffeology is the natural one to consider. And
there is a difference, as we shall see below, but first we define the diffeologies;

The Line diffeology, Dline consist of all parametrizations locally having
there image entirely in one of the subspaces Rv or Rh, and which are
smooth in the ordinary sense, i.e. as maps into R.

The Subspace diffeology.: Let ι : X ⊂ - R2 be the inclusion where Rv
is mapped to the vertical axis, and Rh to the horizontal axis, then the
subspace diffeology is

Dsub := {α ∈ Par(X) | ι ◦ α is smooth}

In is not difficult to verify that the above defines diffeologies, nor is it hard to
see that Dline ⊆ Dsub. To see that they are not equal, consider the smooth map
h : R→ R given by

h(x) :=

{
exp(−1/x) x > 0
0 otherwise

then define the parametrization λ : R→ X by

λ(x) :=


ιh ◦ h(x) x > 0
0 x = 0
ιv ◦ h(−x) x < 0

where ιh and ιv are the obvious inclusions, see fig. 1.1. Note that ι ◦ λ(x) =
(h(x), h(−x)) is smooth hence α ∈ Dsub. On the other hand for any open
neighbourhood U of 0 ∈ R. the image of λ|U is not entirely in either of the
subspace Rh or Rv, hence α 6∈ Dline. To sum up the subspace diffeology contains
singular curves (as for example λ(x)), the line diffeology do not.

1.1.2 Smooth maps

Having defined a smooth structure on sets, diffeologies, the next natural question
is, when is a map between diffeological spaces smooth? The answer follows
almost naturally from the definition of diffeologies, as it seems very reasonable to
require that the composition of two smooth maps is a smooth map, we therefore
make the following;

Definition 1.1.7 A map f : X → Y between diffeological spaces is said to be
smooth, or C∞, if for any plot α for X the composition f ◦ α is a plot for Y .
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Figure 1.1: On the left a plot of h(x), on the right a plot of λ(x), just stopping
at 0 (i.e. the derivations λ(n)(0) = 0 for all n ∈ N), but not staying. Had λ
“stayed” at 0 for any amount of “time” it would had been a plot for the line
diffeology.

See also fig. 1. The set of all smooth maps from (X,DX) to (Y,DY ) will be
denoted by C∞(DX , DY ). Using the notation f ◦ DX := {f ◦ α | α ∈ DX}, we
may write the set of smooth maps from (X,DX) to (Y,DY ) simply as

C∞(DX , DY ) = {f ∈ Maps(X,Y ) | f ◦ DX ⊆ DY } .

Notation as C∞(X,Y ) or mixtures as C∞(DX , Y ), if the diffeologies are clear
from the context, will also be used. Furthermore we may also say that a map
f : X → Y is DX -smooth if f ∈ C∞(DX , Y ).

It is worth noting that the plots for a diffeological space (X,DX) are exactly
the collection of smooth maps into X with there domain in OR∞, in other words

DX =
⋃

U∈OR∞
C∞(U,X).

Definition 1.1.7 has the following simple, but desireable consequences;

Proposition 1.1.8 The following holds, for diffeological spaces (X,DX), (Y,DY )
and (Z,DZ).

(i) If f ∈ C∞(X,Y ) and g ∈ C∞(Y, Z) then g ◦ f ∈ C∞(X,Z).

(ii) idX ∈ C∞(X,X).

Proof:

(g ◦ f) ◦ DX ⊆ g ◦ DY ⊆ DZ

The above proposition says that the collection of diffeological spaces, with
morphisms smooth maps, is a category. We shall call this category the category
of diffeological spaces, and denote it by Dif.

1.2 Generating diffeologies
Given any collection Ω of parametrization of X there exist a weakest diffeology
onX containing Ω, namely the intersection of all diffeologies containing Ω, which
is by lemma 1.2.2, given below, a diffeology. We will say that this diffeology is
generated by Ω, hence we make the following definition;
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Definition 1.2.1 The diffeology generated by Ω is the intersection of all diffe-
ologies on X containing Ω.

The diffeology generated by Ω is denoted by 〈Ω〉. And if given a diffeology D
and a subset Ω ⊆ D such that 〈Ω〉 = D, then we shall say that Ω is a generating
family of D, and call the plots in Ω for generating plots. We shall also say that
D is the weak diffeology generated by Ω, the motivation for this name will, if
not already, become clear in section 1.3. Note also that if we have a canonical
injection X ⊂ - Y then we may view Ω as a collection of parametrizations on
Y . And that the weak diffeology on X generated by Ω is in general different
from the weak diffeology on Y generated by Ω. It will therefore sometimes be
convenient to use the notation 〈Ω〉Y meaning the weak diffeology on Y generated
by Ω. We still need to verify that the intersection of a collection of diffeologies
on a common set is infact a diffeology on that set. It is however not hard, a
proof may be found in Vincent [2008], Iglesias-Zemmour [2007b] or indeed in
any introductory text on diffeology.

Lemma 1.2.2 Given a family D of diffeologies on a set X,the intersection
∩D∈DD is a diffeology on X.

Let us collect some imitate properties of definition 1.2.1;

Lemma 1.2.3 Given collections Ω and Ω′ of parametrization of X the follow-
ing holds

(i) Ω ⊆ 〈Ω〉

(ii) Ω ⊆ Ω′ ⇒ 〈Ω〉 ⊆ 〈Ω′〉

(iii) 〈〈Ω〉〉 = 〈Ω〉

Proof: Clearly we have the following inclusions for any diffeology D containing
Ω

Ω ⊆ 〈Ω〉 ⊆ D
this implies (i) and (iii). (ii) is also a simple consequences of the definition.

1.2.1 Plots of generated diffeologies

Given a collection Ω of parametrizations of X, what do the plots of 〈Ω〉 look
like? The answer to this question is the content of theorem 1.2.4, a proof can
be found in Vincent [2008] or Iglesias-Zemmour [2007b]. Recall that

D◦X denotes
the discrete
diffeology on
X, consiting
of all locally
constant
parametriza-
tions

Theorem 1.2.4
The following equality holds

〈Ω〉 =
{
α ∈ Par(X) | α

loc
∈ D◦X ∪ G(Ω)

}
Remark 1.2.5 In other words theorem 1.2.4 says that a plot α : U → X is in 〈Ω〉
if and only if for all x ∈ U there exist an open neighbourhood V ⊆ U of x such
that α|V is constant or α|V = β ◦ h for a parametrization β ∈ Ω and a smooth map
h : V → Dom(β)

Corollary If Ω is a covering of X then α ∈ 〈Ω〉 if and only if α
loc
∈ G(Ω).

Corollary If Ω is a smooth covering of X then α ∈ 〈Ω〉 if and only if α
loc
∈ Ω.
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1.2.2 Smooth maps and generated diffeologies

If a diffeological space X has a generating family Ω, only the plots in Ω need
to be checked when determining if a map X → Z, into any space Z, is smooth.
To be precise we have the following;

Lemma 1.2.6 Let Ω be a collection of parametrizations on X, a map

f : (X, 〈Ω〉)→ (Y,DY )

is smooth if and only if f ◦ Ω ⊆ DY .

1.3 Lattice structure and constructions
We shall in this section discuss the lattice structure of the collection of diffeolo-
gies on a fixed set. A more detailed discussion, and proof of the results cited in
this section may be found in Vincent [2008].

We shall by P(X) denote the complete lattice consisting of subsets of parametriza-
tions of X, ordered by set inclusion. Recall that, in the complete lattice P(X),
taking supremum corresponds to taking union, and infimum to intersection. By
D(X) we will denote the partially ordered set of diffeologies on X, with the
order induced by the inclusion D(X) ⊂ - P(X). Furthermore we will call the
map

P(X)
Ω→〈Ω〉- D(X)

the generating map and denote it by 〈·〉 (here 〈Ω〉 denotes the diffeology gener-
ated by the collection Ω of parametrizations on X). The following observation
is an important property of the genrating map.

Theorem 1.3.1
The genrating map is a closure operator on P(X) and the closed elements are
exactly the diffeologies on X.

Hence the collection of diffeologies on X, D(X), is a complete lattice. As a
side remark we may note that in example 1 we saw that the discrete diffeology
on X, D◦X , is the bottom of D(X), and the indiscrete diffeology, D•X , the top.
We have the following corollary to theorem 1.3.1

Corollary Consider a collection {Di}i∈I (for some index set I) of diffeologies
on X. Then the infimum and supremum in D(X) of {Di}i∈I is respectively

inf
i∈I
Di =

⋂
i∈I
Di and sup

i∈I
Di =

〈⋃
i∈I
Di

〉

Remark 1.3.2 Note that by the definition of the generating map

sup
i∈I
Di = inf {D ∈ D(X) | Di ⊆ D for all i ∈ I}

It is, by the above, evident that, the infimum infi∈I Di is the strongest
diffeology on X contained in Di for all i ∈ I. And that the supremum supi∈I Di
is the weakest diffeology on X containing Di for all i ∈ I.
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1.3.1 Pushforward and pullback of diffeologies

Consider a map f : X → Y , and assume that a diffeology DX is given for
X, we will be interested in finding the weakest diffeology on Y such that f is
smooth, this diffeology will be called the pushforward of DX . Note that the
strongest diffeology on Y such that f is smooth is uninteresting, why, it is just
the top diffeology D•X . Dually, given a diffeology DY on Y we have the strongest
diffeology on X such that f is smooth, called the pullback of DY .

Definition 1.3.3 The pullback of the diffeology DY along a smooth map f :
X → Y is ←−

f (DY ) := {p ∈ Par(X) | f ◦ p ∈ DY }

which is a diffeology on X.

Definition 1.3.4 The pushforward of the diffeology DX along a smooth map
f : X → Y is

−→
f (DX) := 〈f ◦ DX〉 =

{
p ∈ Par(Y ) | p

loc
∈ D◦Y ∪ f ◦ DX

}
which is a diffeology on Y .

Remark 1.3.5 We may note that if f = idX then
−→
f =

←−
f = idD(X). And if U ∈ OR∞

with the standard diffeology, as defined in example 2, and α : U → X is any map then
α∗(DU ) = G(α), hence −→α (DU ) = 〈α〉.

Lemma 1.3.6 For a map f : (X,DX)→ (Y,DY ) the following is equivalent

(i) f is smooth.

(ii)
−→
f (DX) ⊆ DY

(iii) DX ⊆
←−
f (DY )

Theorem 1.3.7
Let f : X → Y be a map, and let there be given a diffeology DX on X, then
the pushforward of DX is the the weakest diffeology on Y such that f is smooth.
Dually, let there be given a diffeology DY on Y , then the pullback of DY is the
strongest diffeology on X such that f is smooth.

Lemma 1.3.8 Consider two maps, a map f with range X and a map g with
domain X then

−−−−→
(g ◦ f) = −→g ◦

−→
f and

←−−−−
(g ◦ f) =

←−
f ◦←−g

Subduction and inductions

Definition 1.3.9 A map between diffeological spaces is said to be a pre-induction
if the diffeology of the domain space equals the pullback of the diffeology of the
range space, and an induction if in addition it is injective. The map is said to be
a pre-subduction if the pushforward of the diffeology of the domain space equals
the diffeology of the range space, and a subduction if in addition it is surjective.
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Remark 1.3.10 So a map f : (X,DX) → (Y,DY ) is a pre-induction if
←−
f (DY ) = DX ,

and a pre-subduction if
−→
f (DX) = DY .

Remark 1.3.11 Notice that a smooth map π : X → Y is a pre-subduction if and only
if for each plot β : U → Y and each u0 ∈ U there exist an open U0 ⊆ U with u0 ∈ U0

and a plot α : U0 → X such that π ◦ α = β|U0 .

Example 4 (Subspaces)
Consider any subspace A ⊆ Rn, we may then equip A with the subspace diffe-
ology. Let ι : A ⊂ - Rn be the canonical inclusion, then

DA := {α ∈ Par(A) | ι ◦ α is smooth (in the usual sens)} =←−ι (DRn)

is a diffeology on A, it is called the subspace diffeology. Examples 2 and 14
as well as the subspace diffeology of example 3 are all examples of subspace
diffeologies.

We may generalize this construction; consider a subset A of a diffeological
space X the subspace diffeology on A is simply←−ι (DX), where ι is the canonical
inclusion. Note that, by theorem 1.3.7, the subspace diffeology is the strongest
diffeology such that ι is smooth. Furthermore it is evident that ι becomes a
induction.

Example 5 (Quotients)
Let (X,DX) be a diffeological space, and ∼ an equivalence relation on the set
X. Let π : X → X/ ∼ denote the quotient map, i.e the surjective map taking
x ∈ X to its equivalence class. The quotient diffeology on the set X/ ∼ is
−→π (DX). Note that π becomes a subduction, when X/ ∼ is given the quotient
diffeology.

1.3.2 The weak and the strong diffeology

We shall in this section introduce the notation of covers and co-covers, and the
weak and strong diffeology. We shall later in the thesis find much use for the
two lemmas 1.3.14 and 1.3.15. Although not important in this thesis, we shall
however, for the sake of completeness, shortly discuss how the weak and strong
diffeology relates to universal constructions in the category of diffeologies.

Covers and co-covers

Consider a diffeological space (Y,DY ), and a collection of diffeologies on the set
Y say {Di}i∈I . If, for any space Z, a map f : (X,DY ) → Z is smooth if and
only if f : (Y,Di) → Z is smooth for all i ∈ I, it would seems plausible to
say that the collection {Di}i∈I covers DY . In fact, as stated in theorem 1.3.13,
any collection {Di}i∈I of diffeologies on Y covers supi∈I Di, this characterizes
supremum. We therefore make the following;

Definition 1.3.12 A family of diffeologies on a set X is said to be a cover of
the space (X,DX) if the supremum equals DX . And said to be a co-cover of
(X,DX) if the infimum equals DX .

Our main observation, in this section, is the content of the following theorem.
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Theorem 1.3.13
Let {Di}i∈I be a family of diffeologies on Y . Then {Di}i∈I is a cover of (Y,DY )
if and only if for any space (Z,DZ)

C∞(DY ,DZ) =
⋂
i∈I

C∞(Di,DZ),

and a co-cover if and only if for any space (X,DX)

C∞(DX ,DY ) =
⋂
i∈I

C∞(DX ,Di).

Next we will look at, what could be described as, a multi-map generalization
of inductions and subductions. The setup is as follows, consider a collection
of spaces {(Xj ,DXj )}j∈J , with any index set J , together with a collection of
maps fj : Xj → Y . The following lemmas 1.3.14 and 1.3.15 are central to the
constructions of limits and colimit in Dif, as we shall see below.

Lemma 1.3.14 The following is equivalent

(i) DY is the weakest diffeology on Y such that for any j ∈ J the map fj is
smooth.

(ii) {
−→
fj (DXj

)}j∈J cover (Y,DY ).

(iii) For any space Z, any map g : Y → Z is smooth if and only if g ◦ fj is
smooth for all j ∈ J .

(iv) DY =
〈⋃

j∈J fj ◦ DXj

〉
=
{
α ∈ Par(Y ) | ∃j ∈ J : α

loc
∈ D◦Y ∪ fj ◦ DXj

}
Lemma 1.3.14 has a dual, to state this consider a collection of spaces {(Zj ,DZj )}j∈J ,

together with a collection of maps gj : Y → Zj .

Lemma 1.3.15 The following is equivalent

(i) DY is the strongest diffeology on Y such that for any j ∈ J the map gj is
smooth.

(ii) {←−gj (DZj )}j∈J co-cover (Y,DY ).

(iii) For any space X, any map f : X → Y , f is smooth if and only if gj ◦ f is
smooth for all j ∈ J .

(iv) DY =
{
α ∈ Par(Y ) | ∀j ∈ J : gj ◦ α ∈ DZj

}
Definition 1.3.16 Consider a collection of maps {Xj

fj- Y }j∈J . We shall
say that the diffeology supj∈J

−→
fj (DXj ) is the weak diffeology induced by the

collection {fj}j∈J . And given a collection of maps {Y gj- Zj}j∈J . We shall
say that the diffeology infj∈J←−gj (DZj

) is the strong diffeology induced by by the
collection {gj}j∈J .
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Universal constructions

The category of diffeological space is complete and co-complete, i.e. all small
limits and small colimits exist. Well known examples of limits are products,
equalizers and pullbacks, there dual co-limits are coproducts, coequalizers, pushouts.
An introduction to categorical limits and co-limits can, for example, be found
in MacLane [1971].

As we shall see the completeness and cocompleteness follows more or less
directly from lemma 1.3.14 and its dual.Theorem 1.3.17 below, shows the exis-
tence of limits, and tells us how to find them, its dual theorem 1.3.18 does the
same for colimits.

Consider a small scheme (or index category) J and a diagram of type J , i.e
a functor D : J → Dif, we wish to determine the limit and colimit of D. Note
that since Dif is a concrete category (denote by |·| : Dif → Set the forgetfull
functor), we may consider any diagram D in Dif as a diagram |D| in Set. The
following theorem tells us how to lift limits in Set to limits in Dif.

Theorem 1.3.17
Let D : J → Dif be a small diagram, and |D| : J → Set its associated diagram

in Set. Let the cone {X ηj- |D(j)|}j∈J be the limit of |D|. Then the limit of
D is {(

X, inf
j∈J
←−ηj (DD(j))

)
ηj- D(j)

}
j∈J

Theorem 1.3.17 has a dual;

Theorem 1.3.18
Let D : J → Dif be a small diagram, and |D| : J → Set its associated diagram

in Set. Let the co-cone {|D(j)| ηj- X}j∈J be the co-limit of |D|. Then the
co-limit of D is {

D(j)
ηj-

(
X, sup

j∈J

−→ηj (DD(j))
)}

j∈J

1.4 Products and co-products
We shall, several times, use constructions involving products. It is therefore
convenient to collect some basic observations about diffeological products.

1.4.1 The product

Let {(Xi,Di}i∈I be any family of diffeological spaces. The direct product of
the sets is denoted by ∏

i∈I
Xi

and the canonical projections by πi : Πi∈IXi → Xi. In accordance with theo-
rem 1.3.17, we define;

Definition 1.4.1 The product diffeology on Πi∈IXi is the co-cover diffeology
infi∈I←−πi(Di).

We have, as usual, that a map into a product is smooth if and only if all the
coordinate maps are smooth, that is;
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Proposition 1.4.2 Let Y be any diffeological space, then a map f : Y →
Πi∈IXi is smooth if and only if πi ◦ f is smooth for all i ∈ I.

Proof: By lemma 1.3.15.

Furthermore,

Lemma 1.4.3 The projections πi are subductions.

Proof: Let j ∈ I, by lemma 1.3.15, the projections πj are smooth. Let α : U →
Xj be a plot for Xj , and choose for each i ∈ I an element xi ∈ Xi, then define
β : U → Πi∈IXi by

β(u) :=

{
xi u ∈ Xi, for i 6= j

α(u) u ∈ Xj

clearly β is smooth, i.e. a plot. Furthermore πj ◦ β = α, it follows (by defini-
tion 1.3.4) that πj is a subduction.

Products and subspaces

Lemma 1.4.4 Let {Xi}i∈I and {Ai}i∈I be collections of diffeological spaces,
such that Ai is a subspace of Xi. Then the subspace diffeology on

∏
i∈I Ai ⊆∏

i∈I Xi is the product diffeology.

Proof: Let α : U →
∏
i∈I Ai be a plot for the subspace diffeology, that is α may

be considered as a plot for the product diffeology on
∏
i∈I Xi. It follows that

πi ◦ α is smooth, hence a plot for the subspace diffeology on Ai. This implies
that α is a plot for the product diffeology on

∏
i∈I Ai.

Now if α is a plot for the product diffeology on
∏
i∈I Ai, then since πi ◦α is

smooth for each i ∈ I it is a plot for the product diffeology on
∏
i∈I Xi. Hence

α is a plot for the subspace diffeology.

Products of generated diffeologies

Definition 1.4.5 Let X1 and X2 be diffeological space, α1 : U1 → X1 and
α2 : U2 → X2 parametrizations. Then define the product parametrization α1 ×
α2 : U1 × U2 → X1 ×X2 by

α1 × α2(u1, u2) := (α1(u1), α2(u2))

Note that if α1 and α2 are plots then α1 × α2 is a plot for the product
diffeology.

Definition 1.4.6 Let X1 and X2 be diffeological space and Ω1 and Ω2 be col-
lections of parametrizations of respectively X1 and X2. Then let

Ω1 × Ω2 := {α1 × α2 | α1 ∈ Ω1 and α2 ∈ Ω2} .

Lemma 1.4.7 Let X1 and X2 be diffeological spaces, with there diffeology gen-
erated by respectively the coverings Ω1 and Ω2. Then the product diffeology on
X1 ×X2 is generated by Ω1 × Ω2.
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Proof: We claim that 〈Ω1 × Ω2〉 = DX1×X2 . First of all the inclusion ⊆ is
obvious. For the other, let α : U → X1 ×X2 be a plot, and let αi := πi ◦ α for
i = 1, 2. Then the αi maps are, by proposition 1.4.2, plots for Xi, that is αi ∈
〈Ωi〉. It follows, by a simple argument, that there exist an open cover {Uj}j∈J
such that αi|Uj = βi,j ◦hi,j for i = 1, 2 with βi,j ∈ Ωi and hi,j : Uj → Dom(βi,j)
a smooth map. Note that the map h′j : Uj → Dom(β1,j)× Dom(β2,j) given by
h′j(u) = (h1,j(u), h2,j(u)) is smooth, therefore

α|Uj (u) =
(
α1|Uj (u), α2|Uj (u)

)
= (β1,j × β2,j) ◦ h′j(u) ∈ 〈Ω1 × Ω2〉 .

That is α
loc
∈ 〈Ω1 × Ω2〉, hence α ∈ 〈Ω1 × Ω2〉.

1.4.2 The co-product

Let {(Xi,Di}i∈I be any family of diffeological spaces. The coproduct (disjoint
union) of the sets is denoted by ∐

i∈I
Xi

and the canonical injections by ιi : Xi →
∐
i∈I Xi. And in accordance with the

dual of theorem 1.3.17, we define

Definition 1.4.8 The coproduct diffeology on
∐
i∈I Xi is the cover diffeology

supi∈I
−→ιi (Di)

Lemma 1.4.9 Let Z be any diffeological space, then a map f :
∐
i∈I Xi → Z

is smooth if and only if f ◦ ιi is smooth for all i ∈ I.

Proof: By lemma 1.3.14.

Note that if Xi ∈ OR∞ for all i ∈ I then, by lemma 1.3.14 (iv) and since
ιi ◦ DXi = G(ιi), the diffeology of the coproduct

∐
i∈I Xi is just 〈{ιi}i∈I〉.

Example 6 (Constructing the Line diffeology)
Recall examples 3 and 12 then consider the diffeology

X :=
Rv
∐

Rh
0v ∼ 0h

and let π : Rv
∐

Rh - X be the quotient map, and denote by ιv and ιh the
canonical injections R ⊂ - X . Then by the above the diffeology of X is

DX = −→π
(
DRv

‘
Rh

)
= −→π 〈ιv, ιh〉
= 〈π ◦ ιv, π ◦ ιh〉
= Dline.

The third equality requires a little work see Vincent [2008] for details.
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1.5 Diffeomorphism
A large part of the work done in this thesis will be concerned with proving
that certain maps are diffeomorphism. We shall therefore, here, collect some
simple observation concerning diffeomorphism. By diffeomorphism we mean a
isomorphism in the category of diffeological spaces, i.e a smooth bijective map
with smooth inverse.

Proposition 1.5.1 For a bijective map f the following is equivalent

(i) f is a diffeomorphism.

(ii) f is a subduction.

(iii) f is a induction.

Lemma 1.5.2 A bijective map ϕ : X → Y , between diffeological spaces, is a
diffeomorphism if and only if the following holds

(i) ϕ is smooth, and

(ii) there exist a genrating family Ω for DY such that Ω
loc
⊆ ϕ ◦ DX .

Proof: Let α ∈ Ω then there exist an open cover {Ui}i∈I of Dom(α). By
assumption there exist, for each i ∈ I, a plot βi for X such that

φ−1 ◦ α|Ui
= βi,

that is φ−1 ◦ α
loc
∈ DX , hence φ−1 ◦ α ∈ DX . By lemma 1.2.6 φ−1 is smooth.

Lemma 1.5.3 Let φ : X → Y be a diffeomorphism and let A be a subspace of
X. Then the restriction φ|A is a diffeomorphism onto the subspace φ(A).

Proof: By lemma 1.5.2.

Local diffeomorphisms

Definition 1.5.4 Let ϕ : X → Y be a map, and let x ∈ X. Then ϕ is said to
be local diffeomorphism at x if there exist a D-open neighborhood A of x such
that ϕ(A) is D-open and ϕ : A→ ϕ(A) is a diffeomorphism (where the subsets
are given the subspace diffeology).

Lemma 1.5.5 A bijective map φ : X → Y which is a local diffeomorphism at
every point x ∈ X is a diffeomorphism.

Proof: By lemma 1.5.2.

1.6 The D-topology
Any diffeological space has an associated natural topology, called theD-topology.
The D-topology will not play an important role in this thesis, except in sec-
tion 3.5. We shall not go into a detailed study of the D-topology. It is important
to note that the D-topology of a diffeological space is not an extra structure,
but simply a topology naturally carried by a diffeological space.
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Definition 1.6.1 Let DX be a diffeology on the set X. The D-topology of DX

is the final topology with respect to the plots.

Remark 1.6.2 By definition 1.6.1 a subset A of X is DX -open if and only if for all
α ∈ DX the preimage α−1(A) is open.

Smooth maps are D-continuous, to see this let f : (X,DX) → (Y,DY ) be
a smooth map, and let A ⊆ Y be a DY -open subset, then α−1(f−1(A)) =
(f ◦ α)−1(A) for any plot α ∈ DX and since f is smooth f ◦ α ∈ DY , hence
f−1(A) is DX -open.

If a diffeology is generated the final topology with respect to the generating
plots is the D-topology, as we have the following;

Lemma 1.6.3 Let Ω be a collection of parametrizations on X, then a subset
A ⊆ X is 〈Ω〉-open if and only if α−1(A) is open for all α ∈ Ω.

Example 7 (D-topology of the discrete diffeology)
The D-topology of the discrete diffeology is just the discrete topology.

Lemma 1.6.4 Let A ⊆ X be a subspace (i.e A is equipped with the subspace
diffeology) then every set U ⊆ A open in the supspace topology is DA-open.

Proof: Trivial.

Our next example shows that the D-topology of a subspace A of X is not al-
ways the subspace topology. When the D-topology equals the subspace topology
we say that A ⊂ - X is an embedding .

Example 8 (Q ⊂ - R is not an embedding)
Consider the standard diffeology DR on R. Then the D-topology of (R,DR) is
the usual topology on R. To see this let U be an open subset of the real line,
then α−1(U) is open for any plot α, since the plots, in this case, are smooth (in
the usual sense) and therefore continues. And if A is a non open subset of R
then β−1(A) is not open if β is the plot idR.

Now consider Q as a subspace of R, the subspace diffeology DQ is the discrete
diffeology, as any plot in DR is continues hence only the constant plots can have
there image contained in Q. By example 7 the D-topology of (Q,DQ) is the
discrete topology. On the other hand the subspace topology of Q as a subspace
of R with the usual topology, is not the discrete topology (consider the one
point sets, they are not open, as every open set of R contains infinitely many
rationals). Hence the D-topology of Q as a subspace of R is not the subspace
topology.

We note that the D-topology of the canonical diffeology on any open subset
of any finite dimensional euclidean space is the standard topology, this follows
by the first part of the argument in example 8.

Example 9 (The subspace cross is an embeding into R2.)
The cross equipped with the subspace diffeology is an embedding into R2. In
order to justify this claim we only need to consider connected neighborhoods of
0. Since the canonical inclusions ιv and ιh (see example 3) are smooth it follows
that every connected neighbourhood of 0 is similar to the first one shown in the
figure. It follows that the D-topology equals the subspace topology.
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Figure 1.2: Examples of D-open set on the cross.

1.7 The functional diffeology
The category of diffeological spaces is cartesian closed, as we shall show in this
section. The canonical diffeology on function spaces is called the functional
diffeology, it is introduced below. The functional diffeology will play a central
role in many of the constructions we shall deal with in this thesis.

Definition 1.7.1 The evaluation map is the map eval : X × C∞(X,Y ) → Y
defined by

eval(x, f) := f(x).

Definition 1.7.2 Let M ⊆ C∞(X,Y ), and let γ : U →M be any parametriza-
tion of M , and α : V → X a parametrization of X. Then the map γ ·α : U×V →
Y is the parametrization of Y given by

γ · α(u, v) := γ(u) [α(v)]

Theorem 1.7.3
Let M ⊆ C∞(X,Y ). Then there exist a strongest diffeology on M such that the
evaluation map is smooth. This diffeology is

DM := {γ ∈ Par(M) | ∀α ∈ DX : γ · α ∈ DY }

Proof: We must show (1) that DM is a diffeology on M . And (2) that for any
other diffeology D on M making the the evaluation map smooth, it holds that
D ⊆ DM .

(1) Covering: Let γ : U → M be a constant parametrization onto the point
f ∈ C∞(X,Y ), then for any plot α : V → X the map

(u, v)→ γ · α(u, v) = f ◦ α(v)

is clearly smooth, hence γ ∈ DM .
Smoothness: Let γ : U → M be a parametrization, and assume that
γ ∈ DM . Furthermore let h : V → U and α : W → X be smooth maps,
then the map

(v, w)→ (γ ◦ h) · α(v, w) = γ · α(h(v), w)

is evidently smooth, hence γ ◦ h ∈ DM .
Locality: Again let γ : U → M be a parametrization, and assume there
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exist an open covering {Ui}i∈I of U such that γ|Ui
∈ DM . Then for any

plot α : W → X and each i ∈ I the map

Ui ×W 3 (u,w)→ γ · α(u,w)

is a smooth map into Y , i.e a plot for DY . Since DY is a diffeology and
{Ui×W}i∈I an open cover of U ×W it followes by the smoothness of DY
that γ · α is smooth, hence γ ∈ DM .

(2) Let γ : U → M be a plot for the diffeology D, and α : V → X a plot for
DX . Then the map

(u, v)→ eval(α(v), γ(u)) = γ(u)[α(v)] = γ · α(u, v)

is smooth, hence γ ∈ DM .

Definition 1.7.4 (Functional diffeology) Let M ⊆ C∞(X,Y ). The diffeol-
ogy DM of theorem 1.7.3 is called the functional diffeology on M .

We shall, unless otherwise stated, always assume that C∞(X,Y ) is equipped
with the functional diffeology. And we shall by DC∞(X,Y ) denote the functional
diffeology.

Functional diffeology and genrating families

Proposition 1.7.5 Let Ω be a generating covering of X, and M ⊆ C∞(X,Y ).
Then γ : V → M is a plot for the functional diffeology if and only if γ · α is a
plot for Y for all α ∈ Ω.

Proof: Only one implication is not obvious. Assume that γ · α ∈ DY for all

α ∈ Ω. And let β : U → X be a plot for DX , by theorem 1.2.4 β
loc
∈ G(Ω).

Hence there exist a open cover {Ui}i∈I of U such that γ · β|V×Ui
= γ · αi for

αi ∈ G(Ω), that is γ · β
loc
∈ G(DY ) = DY . Hence γ · β ∈ DY .

1.7.1 Cartesian closure of the category of diffeological spaces

As shown below the category of diffeological spaces is cartesian closed i.e. for
diffeological spaces X, Y and Z

C∞(X × Y,Z) ' C∞(X,C∞(Y,Z)).

Definition 1.7.6 Let Φ : Maps(X × Y, Z)→ Maps(X,Maps(Y,Z)) denote the
map

Φ(f)(x)(y) := f(x, y)

Remark 1.7.7 That is Φ(f)(x) is the map y → f(x, y).

Our next lemma shows that the category of sets is cartesian closed.

Lemma 1.7.8 The inverse of the bijective map Φ is the map Φ−1 : Maps(X,Maps(Y, Z))→
Maps(X × Y, Z) given by

Φ−1(f)(x, y) := f(x)(y)
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Proof: Let f ∈ Maps(X × Y,Z) then

Φ−1 ◦ Φ(f)(x, y) = Φ(f)(x)(y) = f(x, y).

Now if f ∈ Maps(X,Maps(Y, Z)) then

Φ ◦ Φ−1(f)(x)(y) = Φ−1(f)(x, y) = f(x)(y).

Remark 1.7.9 Given a plot γ : U → C∞(X,Y ), note that

Φ−1(γ)(u, x) = γ · idX(u, x) = eval(x, γ(u)).

We are now ready to prove that the cartesian closure property;

Theorem 1.7.10
Φ is a diffeomorphism between the spaces C∞(X×Y,Z) and C∞(X,C∞(Y,Z)).

Proof: The proof of this statement will basically be just unwinding the defini-
tions. Our strategy will be to (1) show that Φ restrict to a bijection C∞(X ×
Y,Z)→ C∞(X,C∞(Y,Z))). Then show that Φ◦DC∞(X×Y,Z) = DC∞(X,C∞(Y,Z)),
this will then imply that

−→
Φ
(
DC∞(X×Y,Z)

)
= DC∞(X,C∞(Y,Z)).

By proposition 1.5.1 Φ is then a diffeomorphism as claimed.
In order to show the equality Φ ◦ DC∞(X×Y,Z) = DC∞(X,C∞(Y,Z)) we will

first (2) show that Φ ◦ DC∞(X×Y,Z) ⊆ DC∞(X,C∞(Y,Z)) and then (3) the other
inclusion.

(1) Since we know that Φ is injective we just need to show that it and its
inverse, maps smooth maps to smooth maps. So let f ∈ C∞(X × Y,Z)
we then wish to show that Φ(f) ∈ C∞(X,C∞(Y,Z)). Let α : U → X be
a plot we should then check that the map u → Φ(f)(α(u)) is a plot for
functional diffeology on C∞(Y,Z). So let β : V → Y be smooth then the
map

(Φ(f) ◦ α) · β(u, v) = Φ(f)(α(u))(β(v)) = f(α(u), β(v))

is obviously smooth, hence Φ(f) is smooth. Secondly let f ∈ C∞(X,C∞(Y, Z)),
and let α : U → X and β : V → Y be plots then the map

(u, v)→ Φ−1(f)(α(u), β(v)) = f(α(u))(β(v)) = (f ◦ α) · β(u, v)

is clearly smooth.It followes that Φ−1 is smooth.

(2) Let γ : U → C∞(X × Y,Z) be smooth. We wish to show that Φ ◦ γ
is a plot for DC∞(X,C∞(Y,Z)), that is for any plot α : V → X the map
(Φ ◦ γ) · α : U × V → C∞(Y,Z) is smooth. So let β : W → Y be a plot
then

((Φ ◦ γ) · α) · β(u, v, w) = Φ ◦ γ(u)[α(v)][β(w)]
= γ(u)(α(v), β(w))
= γ · (α× β)(u, v, w)

is smooth, hence (Φ ◦ γ) · α is smooth.
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(3) Let γ : U → C∞(X,C∞(Y,Z)) be a plot, and let α : V → X and
β : W → Y be plots then the map

(u, v, w)→
(
Φ−1 ◦ γ

)
· (α× β)(u, v, w) = γ(u)[α(v)][β(w)]

is smooth, hence Φ−1 ◦ γ is a plot for C∞(X × Y, Z).

Example 10 (A smooth map S1 → C∞(R))
Let F : S1 → C∞(R) be a smooth map, we may then consider F as a smooth
map S1 × R→ R.

See

example 10.Example 11 (Differation is smooth)
Let ξ0 ∈ R and consider the map dξ0 : C∞(R)→ R given by

f → df(ξ)
dξ

∣∣∣∣
ξ0

.

Let α : U → C∞(R) be a plot, then

dξ0(α(u)) =
dα(u)(ξ)

dξ

∣∣∣∣
ξ0

=
∂α · idR(u, ξ)

∂ξ

∣∣∣∣
(u,ξ0)

.

This implies that u → dξ0(α(u)) is smooth, since the partial derivative of a
smooth function is smooth. Consider now the map γ : R → C∞(C∞(R),R)
given by γ(t) := dt. Evidently

γ · α(t, u) =
∂α · idR(u, ξ)

∂ξ

∣∣∣∣
(u,t)

,

hence γ · α is smooth, i.e. γ is a plot.

1.8 More examples
Example 12 (Diffeologies on the cross)
Consider the cross as in example 3, we shall here give some more examples of
diffeologies on the cross. We will only concider diffeomorphisms such that the
subspace diffeologies of the 4 subspaces (see the figure in example 3)

Xa := (−∞, 0)v, Xb := (0,∞)v, Xc := (−∞, 0)h, Xd := (0,∞)h

are the canonical diffeology.
We shall by ιa, ιb, ιc, ιd, ιh and ιv denote the obvious inclusions. Furthermore

we will for a function f : X → R denote by fa the composition f ◦ ιa etc.

(a) The weakest diffeology. Consider the diffeology generated by the injections
of the 4 subspaces given above, i.e. consider

Dweak := 〈ιa, ιb, ιc, ιd〉 .
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This is the weakest diffeology such that the diffeologies of the subspaces
Xa,Xb,Xc and Xd are the canonical diffeology, since if so then the 4 inclu-
sions ιa, ιb, ιc and ιd must be smooth.

Now let f : X → R be Dweak smooth, then by lemma 1.2.6 the restriction
of f to any of the 4 subspaces, from above, is smooth. Consider now any
map f : X → R such that the restriction of f to any of the 4 subspaces
is smooth, f(0) may take any value. By lemma 1.2.6 f is Dweak-smooth.
Hence we conclude that Note that we

use the nota-
tion C∞(X)
to denote
the algebra
C∞(X,R).

C∞(Dweak) = {f ∈ Maps(X ,R) | fa, fb, fc and fd are smooth}

(b) The line diffeology. Consider the diffeology

D := 〈ιh, ιv〉

We claim that D = Dline (see example 3), since ιh, ιv ∈ Dline the inclusion
D ⊆ Dline is evident. For the other inclusion, simply note that for a plot
α ∈ Dline there exist an open cover {Ui}i∈I such that α|Ui

= ιh ◦ h or

α|Ui
= ιv ◦ h for a usual smooth map h, hence α

loc
∈ D.

Clearly the injections ιh and ιv are Dline-smooth. So if a function f : X →
R is Dline-smooth, then fv := f ◦ιv and fh := f ◦ιh are smooth also, hence

lim
x→0

fv(x) = f(0) = lim
x→0

fh(x)

in other words we have a kind of continuity of f at 0, this is true for fv
and fh, but not for f ′v and f ′g (here f ′v etc denotes the first derivative of
fv). See also fig. 1.3.

Let us show by example this last claim, consider the map f : X → R given
by

f(x) =

{
x x ∈ Rh
−x x ∈ Rv

this map is well defined (and f(0) = 0), it is clearly Dline-smooth. Now
fh(x) = x and fv(x) = −x hence

lim
x→0

f ′v(x) 6= lim
x→0

f ′h(x).

(c) The subspace diffeology.

Since Dline ⊆ Dsub it follows that

C∞(Dsub) ⊆ C∞(Dline)

infact we have equality. To see this let f : X → R be Dline-smooth we
then wish to show that it is Dsub-smooth. In order to do this consider first
the case where f(0) 6= 0 then let f̃ : R2 → R be given by

f̃(x, y) :=
fh(x)fv(y)

f(0)
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0

1

2

f2(x) :=

{
x2 + 1 x ∈ Rh
−x2 + 1 x ∈ Rv

Figure 1.3: Plot of a smooth function f2 (bold lines) on the cross with the
line diffeology, and its extension f̃2 (dotted lines) to all of R2, i.e. a smooth
surface. See example 12 (c). For illustrative reasons we have illustrated a
different function that the one used in example 12 (c), it is however clear that
f2 is not smooth “going around a corner”, although it is C1.

and note that

f̃(0, 0) = f(0), f̃(x, 0) = fh(x), f̃(0, y) = fv(y)

and since fv and fh are smooth f̃ is smooth, see fig. 1.3. Since any plot
α ∈ Dsub is in particular a smooth map into R2 it is clear that

f ◦ α = f̃ ◦ α

is smooth, hence f ∈ C∞(Dsub). For the case where f(0) = 0 simply
consider the map x→ f(x) + 1 this is Dsub-smooth, but then f is too.

(d) Let ιx : R ⊂ - X be given by

ιx :=


ιa(x) x ∈ (−∞, 0)
0 x = 0
ιd(x) x ∈ (0,∞)

And define
Dc := 〈ιh, ιv, ιx〉

Then a smooth function f : X → R has in addition to the above the
following properties By limx→0−

we mean the
limit approach-
ing 0 from the
right, i.e with x
positive. And
by limx→0+

the limit ap-
proaching 0
from the left.

lim
x→0+

f (n)
a (x) = lim

x→0+
(f ◦ ιx)(n)(x) = lim

x→0−
(f ◦ ιx)(n) = lim

x→0−
f

(n)
d (x)



A review of the theory of diffeological spaces 30

and likewise we may show that limx→0− f
(n)
b (x) = limx→0+ f

(n)
a (x) and

limx→0+ f
(n)
c (x) = limx→0− f

(n)
d (x), hence we may talk of f (n)(0).

(e) Let ιq : R ⊂ - X be given by

ιq :=


ιc(x) x ∈ (−∞, 0)
0 x = 0
ιb(x) x ∈ (0,∞)

And define
Dd := 〈ιh, ιv, ιx, ιq〉

we note that the smooth functions X → R are exactly the same as in (c).

Now ιq /∈ Dc, since for any open neighbourhood U ⊆ R of 0, the image
Im(ιq) is not a subset of any of the images Im(ιh), Im(ιv) or Im(ιx), hence
ιq|U /∈ G({ιh, ιv, ιx}).

To sum up we have the following relations between the diffeologies on the
cross,

Dc ⊂ - Db

Dweak
⊂ - Dline

⊂

-

Dsub

⊂

-

And between the algebras of functions

C∞(Dd) === C∞(Dc)

C∞(Dweak) �⊃ C∞(Dline)
�

⊃

C∞(Dsub)

=============

Example 13 (The cone)
Consider the following subspace of R3;

Λ :=
{

(x, y, z) ∈ R3 | x2 + y2 = z2
}
.
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We shall denote the subspace diffeology for the cone Λ byDsub. But the subspace
diffeology is not the only diffeology on Λ we shall consider. Let C ⊆ R3 denote
the cylinder of radius 1, with its canonical diffeology, i.e the subspace diffeology.
Define a map π : C → Λ by

π(x, y, z) := (zx, zy, z).

π is easily seen to be a surjective map. We shall call the pushforward diffeology
Dquo := −→π (DC) on Λ the quotient cone diffeology . Since π is a smooth map
(R3 → R3) it follows that

Dquo ⊆ Dsub,

hence C∞(Dsub) ⊆ C∞(Dquo). Furthermore by lemma 1.3.14 a map f : Λ→ R
is Dquo-smooth if and only if f ◦ π : C → R is smooth.

Figure 1.4: Smooth maps on the quotient cone.

The subspace cone is an embedding into R2. In order to justify this, we note
that π : C → Λ, as given above, is smooth, hence D-continues (see section 1.6).
Let U be a D-neighbourhood of 0, and consider the D-open set π−1(U) ⊆ C.
Notice that C ⊂ - R3 is an embedding and π−1(U) is open and containing the
circle π−1({0}). Furthermore it is evident that π|z 6=0 is a diffeomorphism. It
follows that there exist a neighbourhood B ⊆ R3 of 0 such that B∩U ⊆ U , this
implies that U is open in the subspace topology. (see also fig. 1.5)
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Figure 1.5: The subspace cone is an embedding into R2.

Example 14 (The canonical diffeology on Half spaces)
Let

Hn := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}
We shall equip the half space Hn with the subspace diffeology, that is a parametriza-
tion α : U → Hn is a plot if it is smooth as a map into Rn. To be precise, let
ι : Hn ⊂ - Rn denote the canonical inclusion, the canonical diffeology on the
half space Hn is then

DHn := {α ∈ Par(Hn) | ι ◦ α is smooth} .

What about smooth functions on the half spaces. It can be shown that a
DHn -smooth function f : Hn → R is smooth in the usual sense, that is it can
be extended to a smooth function Rn → R (in the usual sense). This is not
obvious, but it is however a direct consequence of the following old result of
Whitney [1943],

Theorem 1.8.1
Let f : Rn → R be a smooth function even in the first coordinate, then there
exist a smooth function g : Rn → R such that

f(x1, . . . , xn) = g(x2
1, . . . , xn).

To see how this imply the above claim, first note that the map α : Rn → Hn

given by
(x1, . . . , xn)

α- (x2
1, x2, . . . , xn)

is a plot for DHn , i.e it is smooth in the usual sense. Hence if f : Hn → R is a
DHn -smooth function then the function

Rn 3 (x1, . . . , xn)→ f(x2
1, x2, . . . , xn)

is smooth, and even in the first coordinate. By Whitney’s theorem f may be
extended to a smooth function on all of Rn.

Roughly the same application of this theorem to diffeology is found in
Iglesias-Zemmour [2007a], were in there also can be found a discussion about
the diffeology of manifolds with boundary.



Chapter 2

Diffeological vector spaces

In this chapter we are going to equip a vector space with a diffeology, in such a
way that addition and scalar multiplication are smooth maps, the two together
will then be called a diffeological vector space. We shall study smooth linear
maps on diffeological vector spaces, and tensor product of diffeological vector
spaces. We shall also in the last section take a brief look at diffeological alge-
bras, as we study the algebra C∞(X), which will be important in the following
chapters.

Note that we shall only consider real vector spaces, although it should be
straightforward to extend most of the results found in this section to vector
spaces over arbitrary fields.

2.1 Diffeological Vector spaces
Definition 2.1.1 Let E be a real vector space and DE a diffeology on E. The
diffeological space (E,DE) is said to be a diffeological vector space if vector
addition and scalar multiplication are smooth mappings.

Remark 2.1.2 So (E,DE) is a diffeological vectorspace if the map (σ1, σ2)→ σ1 + σ2

is an element of C∞(E×E,E), and the map (λ, σ)→ λσ an element of C∞(R×E,E)

A diffeology DE on a vector space E is said to be a vector space diffeology
if (E,DE) is a diffeological vector space.

Example 15
Rn with the canonical diffeology is a diffeological vectorspace.

Example 16
The functional space C∞(X) := C∞(X,R) is a diffeological vector space when
addition and scalar multiplication are defined pointwise.

The proof for the following proposition is trivial, we shall therefore omit it.

Proposition 2.1.3 A linear subspace of a diffeological vector space, is a diffe-
ological vector space when equipped with the subspace diffeology.

33
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2.1.1 Linear maps between diffeological vector spaces

Definition 2.1.4 Let E and F be diffeological vector spaces over the field R,
then the set of smooth linear maps is

L∞(E,F ) := {A : E → F | A is linear and smooth}

Furthermore, as a diffeological space, L∞(E,F ) is equipped with the functional
diffeology.

Proposition 2.1.5 L∞(E,F ) is a diffeological vector space, with addition and
scalar multiplication defined pointwise, hence for A1, A2 ∈ L∞(E,F )

(A1 +A2)(σ) := A1(v) +A2(v) and (kA1)(σ) := kA1(σ).

Proof: Let us first show that L∞(E,F ) is a vector space, hence that given any
two A1, A2 ∈ L∞(E,F ) and λ ∈ R the linear maps A1 + A2 and λA2 are
smooth. First note that the map σ → (A1(σ), A2(σ)) ∈ F × F is smooth (by
proposition 1.4.2). Since the composition of smooth maps is smooth, the map

σ - (A1(σ), A2(σ))
+- A1(σ) +A2(σ) = (A1 +A2)(σ)

is smooth. Secondly note that the map σ → (λ,A1(σ)) is smooth, as scalar
multiplication is smooth, it follows that the map σ → λA1(σ) is smooth. Hence
L∞(E,F ) is a vector space.

Next we wish to show that L∞(E,F ) is a diffeological vector space, that is
we must show that addition and scalar multiplication are smooth operations,
hence that the maps

(A1, A2)→ A1 +A2 and A1 → λA1

are smooth. So let αi : Ui → L∞(E,F ), i=1,2 be plots and let β : U3 → E be
a plot, then

(u1, u2, u3)→ (α1(u1) + α2(u2))[β(v)] = α1 ◦ π1(u1, u2, u3)[β ◦ π3(u1, u2, u3)]
+ α2 ◦ π2(u1, u2, u3))[β ◦ π3(u1, u2, u3)]

which is evidently a plot for F . Hence addition is smooth. The smoothness of
the scalar multiplication follwoes by a similar argument.
Example 17
The collection Der∞x (C∞(X),R) of all smooth derivations, at x ∈ X, on the
algebra C∞(X) is a diffeological vector space. As it is a linear subspace of
L∞(C∞(X),R).

2.2 The weak diffeology for vector spaces
The weak diffeology for vector spaces as we introduce it below, is a generalization
of the fine diffeology for vector spaces, as found in Iglesias-Zemmour [2007c].

Definition 2.2.1 Let E be a real vector space. And let DE be any diffeology
on E. Then the weak vector space diffeology on E generated by DE , is the weak
diffeology generated by the collection of parametrizations of the form

U 3 u→
n∑
i=1

λi(u)γi(u)

where n ∈ N, λi : U → R is smooth, and γi : U → E is a plot for DE .
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We shall by
∑
DE denote the weak vector space diffeology on E generated

by DE .

Theorem 2.2.2
The weak vector space diffeology on E generated by DE is the weakest vector
space diffeology on E containing DE.

Proof: Let DE be a diffeology on the vector space E. We must then, first of all,
show that

∑
DE is a vector space diffeology. Let γ : U → E and γ′ : V → E be

two generating plots for
∑
DE hence we may write

γ(u) =
n∑
i=1

λiγi(u) and γ′(v) =
n+m∑
i=n+1

λiγi(v),

with n,m ∈ N, λi : U → R smooth, and γi : U → E plots for DE . Define the
maps λi(u, v) = λi(u) for i = 1, . . . , n, λi(u, v) = λi(v) for i = n+ 1, . . . ,m and
similar for γi, evidently all of these maps are smooth. Now

γ(u) + γ′(v) =
n+m∑
i=1

λi(u, v)γi(u, v)

hence (u, v)→ γ(u)+γ(v) is smooth as a map into (E,
∑
DE). By lemmas 1.4.7

and 1.2.6 smoothness of (u, v)→ γ(u) + γ(v) implies smoothness of addition on
(E,

∑
DE). Smoothness of scalar multiplication follows by a similar argument.

Let us now show (i), hence let D be a vector space diffeology on E with
DE ⊆ D. Then evidently every generating plot for

∑
DE are plots for D, hence∑

DE ⊆ D. Claim (ii) and (iii) are just special cases of (i).

Corollary Theorem 2.2.2 implies that

(i) If Ω is a collection of parametrizations on E. Then the weak vector space
diffeology

∑
〈Ω〉 is the weakest vector space diffeology, on E, such that the

maps Ω are smooth.

(ii) The weak vector space diffeology
∑
D◦E is the weakest vector space diffeol-

ogy on E.

We shall call the vector space diffeology
∑
D◦E the weak vector space dif-

feology . This diffeology, i.e the weak vector space diffeology, is called the fine
diffeology for vector spaces in Iglesias-Zemmour [2007c].

Smooth linear map on weak diffeological vector spaces

Theorem 2.2.3
Let E be a vector spaces equipped with a diffeology DE and let F be a diffeological
vector space. Then a linear map A : (E,

∑
DE) → F is smooth if and only if

A : (E,DE)→ F is smooth.

Proof: Assume that A : (E,DE) → F is smooth, and let γ : U → E be a
generating plot for

∑
DE , hence

γ(u) =
n∑
i=1

λiγi(u),
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with n ∈ N, λi : U → R smooth, and γi : U → E plots for DE . Then

A(γ(u)) =
n∑
i=1

λiA(γi(u))

hence A : (E,
∑
DE)→ F is smooth. The other implication is trivial.

Corollary Let E and F be diffeological vector space, if E is equipped with the
weak diffeology then

L∞(E,F ) = {A : E → F | A is linear} .

Example 18
The canonical diffeology of Rn is the weak vectorspace diffeology.

Example 19 (Vector space genrated by a set)
Let X be a set, and let DX be a diffeology on X. Let E := span{X}, and
note that we may consider DX as a collection of parametrizations into E. Then
consider the diffeology

DE :=
∑
〈DX〉E

on E. We may also concider
∑
DX as a diffeology on E, this make sense as

in definition 2.2.1 we do not need that DX is a diffeology. In fact
∑
DX is a

vector space diffeology, this is seen by going through the first part of the proof
of theorem 2.2.2, in particular we are using that the generating plots for

∑
DX

make up a covering of E. Now trivially
∑
DX ⊆

∑
〈DX〉E , it is also obvious

that D◦E ∪ DX ⊆
∑
DX . Lemma 1.2.3 then implies that 〈DX〉E ⊆

∑
DX , as∑

〈DX〉E is the weakest vector space diffeology containing 〈DX〉E it follows
that ∑

DX =
∑
〈DX〉E .

Let F be a diffeological vector space then by theorem 2.2.3 and lemma 1.2.6

L∞(E,F ) = {A : E → F | A is linear and A ◦ DX ⊆ DF } .

Example 20 (Diffeological Dual)
Let E be a diffeological vector space over the field K. The diffeological dual
vector space of E is

E∗ := L∞(E,K).

If E is equipped with the weak diffeology then, by theorem 2.2.3, the diffeo-
logical dual equals the algebraic dual. Consider for example the vector space R∞
(consisting of infinite sequences where only finitely many elements are nonzero)
equipped with the weak vector space diffeology. The diffeological dual is then
(R∞)∗ = RN (the vector space consisting of all infinite sequences) equipped
with the functional diffeology as a dual to R∞. Let {ei}i∈N denote a basis for
R∞ then it follows that a parametrization α : U → L∞(R∞,R) is a plot if and
only if u→ α(u)[ei] is smooth. Hence as a diffeological vector space

RN =
∏
N

R

(where addition and scalar multiplication are defined pointwise).
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2.3 Tensors and multilinear maps
We shall in this section introduce the diffeological tensor product.

Multilinear maps

Let E1, . . . , En and F be diffeological vector spaces. Recall that a map A :
E1 × · · · × En → Ω is said to be multilinear if it is separately linear in each n
coordinates, i.e. if for each i = 1, . . . , n and any λ, λ′ ∈ R

A(σ1, . . . , λσi+λ′σ′i, . . . , σn) = λA(σ1, . . . , σi, . . . , σn)+λ′A(σ1, . . . , σ
′
i, . . . , σn).

Denote by
L∞Mult(E1 × · · · × En, F )

the collection of all multilinear and smooth maps E1 × · · · × En → F . And by

L∞Alt(E1 × · · · × En, F )

the collection of all multilinear, alternating and smooth maps E1×· · ·×En → F .
We shall consider these two vector spaces as functional diffeological spaces, i.e.
we equip them with the functional diffeology. Arguments similar to those found
in section 2.1.1 will show that these spaces are in fact diffeological vector spaces.

Tensor product

The following result (theorem 2.3.1) may be found in Greub [1967]. Notice that
there are no conditions of finite dimensionality.

Theorem 2.3.1 (Tensor product)
Let E1, . . . , En be vector spaces. Then there exist a unique (up to isomorphism)
vector space, denoted E1 ⊗ · · · ⊗ En, and a multilinear map

φ : E1 × · · · × En → E1 ⊗ · · · ⊗ En (2.1)

having the following universal property: Given any vector space F , for each
multilinear map A′ : E1 × · · · × En → F there exist a unique linear map A :
E1 ⊗ · · · ⊗ En → F such that A ◦ φ = A′.

The construction in theorem 2.3.1 is called the tensor product. We shall
sometimes denote it by (E1⊗· · ·⊗En, φ). We wish to equip the tensor product
with a diffeology, the following tensor product diffeology is a natural choice;

Definition 2.3.2 Let E1, . . . , En be diffeological vector spaces. The tensor
product diffeology on E1⊗· · ·⊗En is the weak vector space diffeology

∑−→
φ (DE1×···×En

).
Where DE1×···×En

is the product diffeology and φ the map 2.1.

The following remarks are direct consequence of the definition of the tensor
product diffeology;

Remark 2.3.3 Let α : V → E1 ⊗ · · · ⊗En be a plot. Then for each v0 ∈ V there exist
an open set V0 ⊆ V containing v0 and such that

V0 3 v → α(v) =

kX
i=1

λi(v)φ[βi(v)]

with λi : V0 → R smooth and βi : V0 → E1× · · · ×En plots for the product diffeology.
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Remark 2.3.4 The tensor product φ (map 2.1) is smooth. The tensor product diffeol-
ogy is in fact the weakest vector space diffeology on the tensor product such that φ is
smooth.

Theorem 2.3.5
As diffeological vector spaces

L∞(E1 ⊗ · · · ⊗ En, F ) ' L∞Mult(E1 × · · · × En, F ).

Proof: Define a map Φ : L∞(E1 ⊗ · · · ⊗ En, F )→ L∞Mult(E1 × · · · × En, F ) by

Φ(A) := A ◦ φ, (2.2)

where φ is the tensor product. First of all Φ is well defined, to see this let
A ∈ L∞(E1 ⊗ · · · ⊗ En, F ) and let αi : Ui → Ei be plots then

Φ(A)(α1 × · · · × αn(u1, . . . , un)) = A (φ[α1 × · · · × αn(u1, . . . , un)])

hence Φ(A) is smooth.
We claim that Φ is a linear diffeomorphism. Φ is, by theorem 2.3.1, evidently

linear and injective. To see that Φ is surjective let A′ ∈ L∞Mult(E1×· · ·×En, F ),
by theorem 2.3.1 there exist a unique linear map A : E1 ⊗ · · · ⊗ En → F such
that A ◦ φ = A′, where φ is the map 2.1. This implies that A(φ[DE1×···×En

]) =
A′(DE1×···×En

)) ⊆ DF , and by definition 1.3.4, lemma 1.2.6 and theorem 2.2.3
this implies that A is smooth. Hence Φ is surjective.

We must, in addition, show that the map defined by eq. (2.2) is a diffeomor-
phism. Let γ : U → L∞(E1⊗· · ·⊗En, F ) be a plot for the functional diffeology
and let α : V → E1× · · · ×En a plot for the product diffeology (note that φ ◦α
is a plot for the tensor product diffeology). Then the map

(u, v)→ Φ(γ) · α(u, v) = γ(u) ◦ φ[α(v)] = γ · (φ ◦ α)(u, v)

is seen to be smooth. That is Φ is smooth. Now let γ′ : U → L∞Mult(E1 × · · · ×
En, F ) be a plot for the functional diffeology. By theorem 2.3.1 there exist a
unique map γ : U → L∞(E1⊗· · ·⊗En, F ) such that Φ(γ(u)) = γ(u)◦φ = γ̃(u).
Let α : V → E1 ⊗ · · · ⊗ En be a plot, by remark 2.3.3 we may assume that

α(v) =
k∑
i=1

λi(v)φ ◦ βi(v)

with λi : V → R smooth and βi : V → E1 × · · · × En plots. Hence the map

(u, v)→ γ(u)[α(v)] =
k∑
i=1

λi(v)(γ(u) ◦ φ)[βi(v)]

=
k∑
i=1

λi(v)γ′ · βi(u, v)

is smooth. It follows that γ is a plot for the functional diffeology, and by
lemma 1.5.2 this implies that Φ is a diffeomorphism.
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2.4 The algebra of smooth real functions
Let X be a diffeological space, then the space C∞(X) := C∞(X,R) (with the
functional diffeology) is a diffeological vector space. As usual addition and
scalar multiplication are defined pointwise. In addition pointwise multiplication
is seen to be smooth. In short we may say that C∞(X) is a diffeological algebra.
It is not hard to verify that C∞(X) is in fact a diffeological algebra, we shall
therefore omit the proof.

Definition 2.4.1 Let ϕ : X → Y be a smooth map. Define ϕ̂ : C∞(Y ) →
C∞(X) by

ϕ̂(f) := f ◦ ϕ

Let us collect a few simple observations;

Proposition 2.4.2 Let ϕ : X → Y be a smooth map. Then the map ϕ̂ is a
smooth algebra homomorphism.

Proof: We shall show (1) that ϕ̂ is smooth, (2) that it is an algebra homomor-
phism;

(1) Consider two plots γ : U → C∞(Y ) and α : V → X. Then

ϕ̂(γ(u))[α(v)] = γ(u) ◦ ϕ[α(v)]

hence (u, v)→ ϕ̂(γ(u))[α(v)] is smooth, as ϕ ◦ α is a plot for Y .

(2) Consider two functions f, g ∈ C∞(Y ) and a constant λ ∈ R, then

ϕ̂(f + g) = (f + g) ◦ ϕ = f ◦ ϕ+ g ◦ ϕ = ϕ̂(f) + ϕ̂(g).

It is as well evident that ϕ̂(fg) = ϕ̂(f)ϕ̂(g) and ϕ̂(λg) = λϕ̂(g).

Lemma 2.4.3 Let ϕ : X → Y be a smooth map. Then

(i) if ϕ is surjective then ϕ̂ is injective.

(ii) if ϕ is a diffeomorphism then ϕ̂ is an isomorphism.

Proof: (i) Assume that ϕ is surjective. Then for any two function f, g ∈
C∞(Y ) with f ◦ ϕ = g ◦ ϕ surjectiveness of ϕ implies that f = g. Hence
ϕ̂ is injective.

(ii) Simply note that for f ∈ C∞(X)

ϕ̂ ◦ ϕ̂−1(f) = f ◦ ϕ−1 ◦ ϕ = f,

and ϕ̂−1 ◦ ϕ̂ = idC∞(Y ).
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Determining C∞(X) and Boman’s theorem.

How can we determine which function C∞(X) consist of? The following lemma
can sometimes be helpful;

Lemma 2.4.4 A map f : X → R is smooth if and only if for each smooth
curve α : R→ X the map

ξ → f ◦ α(ξ)

is smooth.

In order to prove this we need to utilize Boman’s theorem. This is not a
trivial result and a prove may be found in Boman [1967].

Theorem 2.4.5 (Boman)
Let f : Rn → R be any function, then f is smooth if and only if f ◦ c is smooth
for every smooth curve c : R→ Rn.

It is said that the theorem, given above, by J. Boman, inspired A. Frölicher
in his work on, what later was to be known as, Frölicher spaces. Lemma 2.4.4
trivially follows by applying Boman’s theorem. In fact lemma 2.4.4 holds if we
replace C∞(X) with C∞(X,F ) where F is any diffeological Frölicher space. An
introduction to diffeological Frölicher spaces may be found in Vincent [2008].



Chapter 3

Diffeological Tangent spaces

We shall in this chapter construct the tangent space over a point x on a diffeo-
logical space X. Below is listed some natural requirement that a tangent space
should fulfil. The constructed tangent space will fulfil all of these.

(a) To each point x of a diffeological space X is associated a vector space TxX.
And to each smooth map φ : X → Y between diffeological spaces X and Y
is associated a linear map Txφ : TxX → Tφ(x)Y . This association should
define a functor

category of diffeological spaces→ category of vector spaces.

We shall call this functor the tangent functor.

(b) The tangent functor should be an extension of the usual tangent functor
on smooth manifolds.

(c) Each tangent space should be equipped with a natural diffeology, and for
U ∈ OR∞ and each u ∈ U

TuU ' Rdim(U),

as diffeological spaces.

(d) TxX should be a linear subspace of the vector space of smooth derivation
at x on C∞(X). And for each smooth map α : U → C∞(X) and any
tangent vector δ ∈ TxX the map

u→ δ(α(u))

should be smooth.

3.1 Plot derivations
Let, in the following, X be a diffeological space and x a point in X. As allready
mentioned each plot α : R → X with α(0) = x induces a derivation, denoted
dα on the algebra C∞(X) of smooth functions on X. We shall in this section
make this precise.

41
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Definition 3.1.1 The set of curves centered at x is the set

Px(X) := {α ∈ C∞(R, X) | α(0) = x} .

We shall equip Px(X) with the functional diffeology. Hence we consider
Px(X) as a subspace of C∞(R, X). Note that by the cartesian closure property
(see section 1.7) a plot γ : U → Px(X) for the space of curves centered at x,
may be identified with a smooth map γ : U × R→ X for which γ(u, 0) = x.

Definition 3.1.2 Let r ∈ R and α ∈ Px(X). Define the map r ∗α : R→ X by

r ∗ α(u) := α(ru)

Note that if α is a curve centered at x then r ∗ α is too.

Lemma 3.1.3 The map ∗ : R× Px(X)→ Px(X) is smooth.

Proof: Consider a plot γ : U → Px(X), and a smooth parametrization λ : V →
R. In order to prove the claim, we must show that the map

(u, v)→ λ(v) ∗ γ(u)

is smooth, with λ : V → R a smooth function. That is for any smooth function
h : W → R, the map

(u, v, w)→ (λ(v) ∗ γ(u)) · h(w) = γ(u)[λ(v)h(w)]

is smooth, but it clearly is.

We shall next define a plot derivation on X. Note that we use the notation

d0(f) :=
df(u)
du

∣∣∣∣
0

,

with f ∈ C∞(R,R).

Definition 3.1.4 Let α ∈ Px(X) be a plot. The, by α, induced plot derivation
is the map dα : C∞(X)→ R given by

dα(f) := d0(f ◦ α).

Example 21
If α ∈ Px(X) is locally constant at x then dα = 0.

Lemma 3.1.5 Let α ∈ Px(X), then d(r ∗ α) = rdα.

Proof: Let f ∈ C∞(X,R) then

d(r ∗ α)(f) =
df ◦ α(ru)

du

∣∣∣∣
0

= rdα(f).

Theorem 3.1.6
Let α ∈ Px(X), then the induced plot derivation dα : C∞(X)→ R is a smooth
derivation, at x, on the algebra C∞(X).
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Proof: Let α be a curve on X, centered at x ∈ X. We shall then show (1) that
dα : C∞(X)→ R is smooth, and (2) that it is a derivation on C∞(X).

(1) Let γ : V → C∞(X) be a plot, then the map γ ·α : V ×R→ R is smooth
(see section 1.7). For each v ∈ V

dα(γ(v)) = d0(γ(v) ◦ α) =
∂γ · α(v, u)

∂u

∣∣∣∣
(v,0)

hence the map v → dα(γ(v)) is smooth, as γ ·α is smooth (and the partial
derivative of a smooth map is smooth).

(2) dα is linear since for any two f, g ∈ C∞(X)

d0([(f + g) ◦ α]) = d0(f ◦ α) + d0(g ◦ α),

and a derivation since in addition

d0([(fg) ◦ α]) = d0(f ◦ α)g(x) + f(x)d0(g ◦ α)

3.2 The Tangent cone
The collection of plot derivation on X, makes up a cone in the vector space of
derivations on X, called the tangent cone. We shall, in this section, equip the
tangent cone with a natural diffeology, the tangent cone diffeology.

Definition 3.2.1 Let V be a real vector space, and A a subset of V then let

R ·A := {λa | λ ∈ R and a ∈ A}

Definition 3.2.2 (Cone) Let V be a real vector space, a subset A of V is a
(pointed) cone if

R ·A ⊆ A

Definition 3.2.3 (Tangent cone) The Tangent cone set is the set

CxX := {dα | α ∈ Px(X)} .

Notice that we have the following inclusions

CxX ⊆ Der∞(C∞(X),R) ⊆ L∞(C∞(X),R) ⊆ C∞(C∞(X),R).

Proposition 3.2.4 The set CxX is a pointed cone in the vectorspace of all
derivations, at x, on C∞(X).

Proof: Evidently CxX is a subset of the vectorspace of derivations, at x, on
C∞(X). And by lemma 3.1.5 CxX is a cone.

Example 22 (Tangent cones on the cross)
Consider the cross as in examples 3 and 12. Let us go through the cases and
find the tanget cone, at 0, in each case.
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(a) The weak diffeology. Since the only curve centered at 0 is the constant it
follows that

C0X = {0}

(b) The line diffeology. Let α be a curve centered at 0 on (X ,Dline). Then
by theorem 1.2.4 α is locally constant at 0, or there exist a open neigh-
bourhood U ⊆ Dom(α) of 0 and a non constant smooth map h : U → R,
such that α|U = ιv ◦ h or α|U = ιh ◦ h. If α is locally constant at 0 then
evidently dα = 0, so assume that α|U = ιv ◦ h. Clearly h(0) = 0, and a
simple calculation will show that

dα = h′(0)dιv.

Hence in general dα must be zero or proportional to dιh or dιv. To see that
the two derivations dιh and dιv are not equal consider the map f : X → R
given by

f(x) =

{
x x ∈ Rh
−x x ∈ Rv

this map is well defined (as f(0) = 0), and it is smooth since f ◦ ih and
f ◦ iv are smooth. Now

dιh(f) = 1 and dιv(f) = −1.

We conclude that
C0X = R · {dιh, dιv}.

(c) The subspace diffeology. The only curves which are not found in the line
diffeology but are found in the subspace diffeology, are the singular curves
(see example 3). If α is a singular curve then obviously dα = 0, as
α(n)(0) = 0 for all n ∈ N. Hence, bearing in mind that C∞(Dsub) =
C∞(Dline), the tangent cone is the same as for the line diffeology.

(d) An argument similar to that in the first part of (b) shows that

CxX ⊆ R · {dιh, dιv, dιx}.

Now if f : X → R is Dc smooth, then

dιh(f) = d0(f ◦ ih) = f ′h(0) , dιv(f) = f ′v(0) and dιx(f) = f ′x(0)

in example 12 it is shown that f ′h(0) = f ′v(0) = f ′x(0), hence the tangent
cone is a one dimensional vector space.

(e) A similar argument as for (c) shows that also in this case the tangent cone
is a one dimensional vector space.

Notice that, the above example in particular shows that the tangent cone is
not always a vector space.
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3.2.1 The tangent cone diffeology

We shall equip the tangent cone with a natural diffeology, the tangent cone
diffeology, as defined in the following;

Definition 3.2.5 (Tangent cone diffeology) A parametrization γ : U →
CxX is a plot for the tangent cone diffeology, if for each u0 ∈ U there exist an
open neighbourhood U0 of u0 and a smooth parametrization γ† : U0 → Px(X)
such that

γ(u) = d[γ†(u)] for all u ∈ U0.

We shall call the map γ†, from the above definition, a to γ associated map.
The collection of plots for the tangent cone diffeology will be denoted by DCxX ,
it is not hard to see that it is in fact a diffeology. Note in particular that the
tangent cone diffeology is genrated by parametrizations of the form

u→ d[γ†(u)],

with γ† : U → Px(X) a plot, we shall call plots of this form for generating plots
(although this is a bit misleading, as there may be other generating sets). It is
important to note that the collection of generating plots is a smooth covering.
By lemma 1.2.6 a map A : CxX → Y (with Y any diffeological space) is smooth
if and only if

u→ A(d[γ†(u)])

is smooth for all γ† : U → Px(X) plots.

Lemma 3.2.6 Let x ∈ X then, the evaluation map eval : C∞(X)× CxX → R
is smooth.

Proof: We must show that the diffeology of the cone space DCxX is weaker than
the functional diffeology on CxX ⊆ C∞(C∞(X),R). Hence let γ : U → CxX
be a generating plot for DCxX , and consider a smooth map φ : V → C∞(X),
then the map

γ · φ(u, v) = d[γ†(u)](φ(v))

= d0(φ(v) ◦ γ†(u))

=
∂ [φ · (γ† · idR)](v, u, ξ)

∂ξ

∣∣∣∣
(v,u,0)

is smooth, since the map φ · (γ† · idR) : V ×U ×R→ R is smooth. Assume now
that γ is a plot for DCxX then γ ·φ is, by the above, smooth in a neighbourhood
of every point of the domain. It follows that γ · φ is smooth, that is γ is a plot
for the functional diffeology.

Example 23
Consider a plot γ : U → C0X for the line diffeology and write it as

γ(u) = λh(u)dιh + λv(u)dιv.

(Note that at each point u either λh(u) = 0, λv(u) = 0 or they are both zero).
Consider the Dline smooth map f : X → R given by

f(x) =

{
x x ∈ Rh
0 x ∈ Rv

.
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By lemma 3.2.6 the map u → eval(f, γ(u)) = γ(u)(f) = λh(u) is smooth. It
follows, by a similar argument, that λv(u) is smooth.

Figure 3.1: Plots for the tangent cone space at 0 on X .

Let us make a more careful analysis of the tangent cone space at 0. Consider
a plot γ† : U → P0(X ), by the cartesian closure we may consider γ† as a smooth
map U ×R→ X with γ†(u)(0) = 0. By restricting the domain we may assume
that there exist a smooth map h : U × R→ R such that

γ†(u, r) = ιh ◦ h(u, r) or γ†(v, r) = ιh ◦ h(u, r).

It follows that

d[γ†(u)] =
∂h(u, r)
∂r

∣∣∣∣
(u,0)

dιh or d[γ†(u)] =
∂h(u, r)
∂r

∣∣∣∣
(u,0)

dιv.

Example 24
Consider the cone with the subspace diffeology (see example 13) , and the plots
αθ(t) := (cos(θ)t, sin(θ)t, t). The map γ† : R→ C∞(R,Λ) given by γ†(θ) := αθ
is smooth, and γ†(θ)(0) = 0. Hence γ(θ) = dαθ is a plot for the tangent cone
space at 0.
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Figure 3.2: The plot αθ.

Open question Is γ a constant plot? (I think so, the problem is essentially to
determine C∞(Λ), and the behaviour of functions near the singularity).

3.3 The Tangent Space
Definition 3.3.1 (Tangent space) The Tangent space at x ∈ X is the vector
space

TxX := span{CxX}.

Notice that CxX ⊆ TxX hence we may view the tangent cone diffeology as
a collection of parametrizations on the tangent space. However DCxX is not
necessarily a diffeology on the tangent space. The tangent space diffeology is
defined as the weakest vectorspace diffeology containing DCxX see section 2.2
and example 19. In other words;

Definition 3.3.2 (Tangent space diffeology) The tangent space diffeology
is the vector space diffeology

DTxX :=
∑
DCxX .

When we in the following talk of the tangent space we shall mean, the tangent
space, as a diffeological space, where the diffeology is the tangent space diffeology
as described above. Note that

∑
DCxX =

∑
〈DCxX〉TxX

.
In order to clarify the constructions we shall, in the following proposition,

sum up some important properties of the tangent space diffeology. The proof is
essentially the discussion in example 19.
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Proposition 3.3.3 (The tangent space diffeology) Let X be a diffeological
space. Then the following holds

(i) A generating plot for DTxX is of the form

u→
n∑
i

λi(u)d[γ†i (u)]

where λi : U → R is smooth and γ†i : U → C∞(R, X) smooth with
γ†i (u)(0) = x for all u ∈ U .

(ii) Let F be any diffeological vector space. Then a linear map A : TxX → F
is smooth if and only if

u→ A(d[γ†(u)])

is smooth, for all plots γ† : U → C∞(R, X) with γ†(u)(0) = x for all
u ∈ U .

(iii) DTxX is the weakest vector space diffeology on TxX such that the maps
u→ d[γ†(u)] are smooth.

Example 25 (The tangent space of a discrete diffeoloical space)
Consider any discrete diffeological space X, then at any point x ∈ X by exam-
ple 21 the tangent space is the zero space.

Example 26 (The Tangent space of Rn )
For each 0 < i ≤ n define the following maps. Define ρi : R→ Rn by

ρi(ξ) = ( 0, . . . , 0︸ ︷︷ ︸
i− 1 copies

, ξ, 0, . . . , 0).

And let ξ0 ∈ Rn and define τi(ξ0) : R→ Rn by

τi(ξ0)(ξ) := ρi(ξ) + ξ0.

Then note that for f ∈ C∞(Rn,R), ξ0 ∈ Rn

d[τi(ξ0)](f) = d0(f ◦ τi(ξ0)) =
∂f(ξ1, . . . , ξn)

∂ξi

∣∣∣∣
ξ0

so for any α ∈ Pξ0(Rn) (letting α(ξ) = (α1(ξ), . . . , αn(ξ)))

dα(f) = d0(f ◦ α) =
n∑
i=1

dαi
dξ

∣∣∣∣
0

d[τi(ξ0)](f). (3.1)

Hence the set of vectors d[τ1(ξ0)], . . . , d[τn(ξ0)] spans the tangent space Tξ0Rn.
It is not hard to see that these vectors are linearly independent, i.e they form a
basis for the tangent space at ξ0. Notice that Cξ0Rn = Tξ0Rn.

We have in fact that TaRn ' Rn, as the tangent space diffeology is the weak
vector space diffeology. To see this, let γ : U → Tξ0Rn be a plot for the tangent
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cone diffeology, and let γ†(u)(ξ) = (γ†1(u)(ξ), . . . , γ†n(u)(ξ)) be its associated
map (see definition 3.2.5). Then by eq. (3.1)

γ(u) =
n∑
i=1

d0(γ†i (u))d[τi(ξ0)]

=
n∑
i=1

∂γ†i · idR(u, ξ)
∂ξ

∣∣∣∣∣
(u,0)

d[τi(ξ0)]

hence γ is a plot for the weak vector space diffeology. It follows that the tangent
space diffeology is the weak vector space diffeology. And by example 18 this
implies that TaRn ' Rn.

Example 27 (The Tangent space of half spaces)
Let n ∈ N and consider the half space Hn with the canonical diffeology, as
defined in example 14. Let α = (α1, . . . , αn) be a curve on Hn centered at 0
and let f ∈ C∞(Hn). As discussed, in example 14, we may extend f to a map
f ′ ∈ C∞(Rn). Note that

dα(f) = d0(f ◦ α) = d0(f ′ ◦ α) =
n∑
i=1

d0(αi)
∂f ′

∂xi

∣∣∣∣
0

=
n∑
i=1

d0(αi)d[τi(0)] (f ′) .

Evidently d0(α1) = 0, it follows that
A curve on H2.

dα(f) =
n∑
i=2

α′i(0)d[τi(0)](f).

The conclusion, the tangent space at an interior point has dimension n and at
a boundary point it has, as expected, dimension n− 1.

3.3.1 The Cotangent space

Definition 3.3.4 The dual tangent space is the diffeological vector space

T ∗xX := L∞(TxX,R)

Example 28 (The tangent space of the star)
Consider the set

X∗ :=
∐
n∈N Rn
{0n}n∈N

we shall call this set The Star . Consider the canonical injections ιn : R → Rn,
and define a diffeology for X∗ by

D∗ := sup{−→i n(DR)} =

〈⋃
n∈N

ιn

〉

An argument similar to that given in example 22 will show that

CxX = R · {dιn | n ∈ N}

hence TxX ' R∞, and T ∗xX ' RN.
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3.4 The tangent map
Definition 3.4.1 Let ϕ : X → Y be a smooth map between diffeological
spaces, and let x ∈ X. Define a map Txϕ : CxX → Cϕ(x)Y by

Txϕ(dα) := d[ϕ ◦ α].

Note that for f ∈ C∞(X)

Txϕ(dα)(f) = dα(ϕ̂(f)), (3.2)

(see definition 2.4.1). This implies in particular that Txϕ is well defined. We
will show, below, that this map extends to a linear map between the tangent
spaces, the tangent map.

Definition 3.4.2 Let A be a (pointed) cone of the real vectorspace V and B a
(pointed) cone of the real vector space W . A map S : A → B is a cone map if
for any λ ∈ R and any a ∈ A

S(λa) = λS(a)

Note that Txϕ is a cone map as

Txϕ(λdα) = Txϕ (d[λ ∗ α]) = λd[ϕ ◦ α].

Lemma 3.4.3 Let A and B be (pointed) cones of the real vector spaces. A
cone map S : A → B extends to a linear map (also called S) between the real
vectorspaces span(A) and span(B) if and only if for any a1, . . . , an ∈ A

a1 + · · ·+ an ∈ A⇒ S(a1 + · · ·+ an) = S(a1) + · · ·+ S(an).

Proof: Define a map S′ : span(A)→ span(B) by

S′(a1 + · · ·+ an) := S(a1) + · · ·+ S(an)

where a1, . . . , an ∈ A. This map is properly defined since if a1 + · · · + an =
an+1 + · · ·+ am then by assumption

S(a1) = S(an+1) + · · ·+ S(am)− S(a2)− · · · − S(an)

hence
S′(a1 + · · ·+ an) = S′(an+1 + · · ·+ am).

The map S′ as defined is clearly a linear extension of the cone map.

Proposition 3.4.4 (Tangent map) Let ϕ : X → Y be a smooth map. Then
the map Txϕ : CxX → Cϕ(x)Y extends to a smooth linear map Txϕ : TxX →
Tf(x)Y .

Proof: We must show (1) that the cone map Txϕ extend to a linear map between
the tangent spaces, and (2) that it is smooth.
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(1) Let α1, . . . , αn ∈ Px(X), and assume that there exist a α ∈ Px(X) such
that

dα = dα1 + · · ·+ dαn.

It then follows, by using eq. (3.2), that for any f ∈ C∞(Y )

Txϕ(dα)(f) = (dα1 + · · ·+ dαn)(ϕ̂(f))
= Txϕ(dα1)(f) + · · ·+ Txϕ(dαn)(f)

This implies by lemma 3.4.3 that the cone map Txϕ extends to a linear
map Txϕ : TxX → Tf(x)Y .

(2) Let γ : U → TxX be a generating plot for the tangent cone diffeology,
and denote by γ† its associated map. Then

Txϕ(γ(u)) = d[ϕ ◦ γ†(u)]

evidently u→ Txϕ(γ(u)) is a plot for the tangent space Tϕ(x)Y . It follows
that Txϕ is smooth.

Definition 3.4.5 The linear map Txϕ : TxX → Tf(x)Y , as defined above, is
called the tangent map.

Theorem 3.4.6 (Chain rule)
Let ϕ : Y → Z and ψ : X → Y be smooth maps, then

Tx(ϕ ◦ ψ) = Tψ(x)ϕTxψ

Proof: Let α ∈ Px(X) then

Tψ(x)ϕ(Txψ(dα)) = Tψ(x)ϕ (d[ψ ◦ α])
= d[ϕ ◦ ψ ◦ α]
= Tx(ϕ ◦ ψ)(dα)

Example 29 (The tangent map between euclidian spaces)
Consider a smooth map ϕ : Rn → Rm, let ϕi = πi ◦ f that is

ϕ(ξ1, . . . , ξn) = (ϕ1(ξ1, . . . , ξn), . . . , ϕm(ξ1, . . . , ξn)) .

Now for ξ0 ∈ Rn, and f ∈ C∞(Rm)

Tξ0ϕ (d[τi(ξ0)]) (f) = d[ϕ ◦ τi(ξ0)](f)
= d[τi(ξ0)](f ◦ ϕ)

=
∂f ◦ ϕ(ξ1, . . . , ξn)

∂ξi

∣∣∣∣
ξ0

=
m∑
j=1

∂φj
∂ξi

∣∣∣∣
ξ0

d[τj(φ(ξ0))](f).

Hence in the “tau” basis we have, as expected

Tξ0ϕ =

(
∂φj
∂ξi

∣∣∣∣
ξ0

)
ij
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3.5 Regular diffeological spaces
Let A be a D-open subspace of a diffeological space X, x0 a point in A and
denote by ιA the canonical inclusion. We shall in this section study the fol-
lowing problem, when is Tx0ιA an isomorphism, i.e. a linear isomorphism and
a diffeomorphism. This is important when dealing with model space modelled
on diffeological spaces, since we which to know if the tangent spaces are also
modelled on the tangent spaces of the model spaces. We suggest the notion of
regular diffeological spaces, it is simple and have the nice property that a space
model on regular model space is it self regular. Furthermore for regular space
Tx0ιA is an isomorphism.

Examples of model space modelled on regular spaces are finite dimensional
manifolds with or without boundary. This implies in particular that requirement
(b) stated in the introduction of the chapter is fulfilled.

Definition 3.5.1 A diffeological space X is said to be regular if there for each
x ∈ X and each D-open subset x ∈ U ⊆ X exist a D-open subset x ∈ V ⊆ U ,
and a smooth map X → R being 1 on V and zero outside U .

Figure 3.3: Regular diffeological space.

Open question Which diffeological spaces are regular? In particular are there
non regular diffeological spaces? (I think so).

Example 30
Rn, with the canonical diffeology, is regular.

Lemma 3.5.2 Let U ⊆ Rn be open and let b : Rn → R be any smooth function
being zero outside U . And let f : U → R be any smooth function, then the
function

Rn 3 ξ →

{
b(ξ)f(ξ) ξ ∈ U
0 ξ ∈ Rn − U

is smooth.

Proof: By Boman’s theorem (see theorem 2.4.5) it is enough to prove the claim
for n = 1. Let ξ0 be a point on the boundary of U , and choose a sequence
ξi ∈ U converging to ξ0, evidently b(k)(ξi) → 0 for all k ∈ N. By repeated use
of Leibniz product rule it then follows that

(b · f)(k)(ξi)→ 0.
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This implies the claim.

Theorem 3.5.3
Let X be a regular diffeological space , A any D-open subspace of X and let
x0 ∈ A Then Tx0ιA is a isomorphism (where ιA is the canonical inclusion). In
particular Tx0A ' Tx0X.

Proof: Let ιA be the canonical inclusion A ⊂ - X. We shall then show that
Tx0ιA is a diffeomorphism, we shall do this in three steps (1) surjectiveness,
(2) injectiveness and finally (3) that Tx0ιA is a diffeomorphism. (Note that the
critical point, where we need that the space is regular, is to show injectiveness).

(1) Let dα ∈ Cx0X, that is α : R → X is a plot with α(0) = x. Let U :=
α−1(A) as A is D-open U ⊆ R is open. Hence there exist a ε > 0 such
that Bε(0) ⊆ U , and a smooth map h : R→ Bε(0) with d0h = 1. Now let
β := α ◦ h, evidently β : R→ A is a plot. And for f ∈ C∞(X)

Tx0ιA(dβ)(f) = d0(f ◦ ιA ◦ α ◦ h)
= d0h d0(f ◦ α)
= dα(f).

Hence Tx0ιA is surjective.

(2) Let dα, dβ ∈ Cx0A and assume that dα 6= dβ, i.e. there exist a smooth
function f ∈ C∞(A) such that dα(f) 6= dβ(f). By regularity there exist
a bump function χ : X → R 1 in a neighbourhood of x0 and zero outside
A. Let

g(x) :=

{
χ(x)f(x) x ∈ A
0 x ∈ X −A

then since A is D-open and by lemma 3.5.2 g is smooth, i.e g ∈ C∞(X).
Furthermore it is evident that g(x) = f(x) in a neighbourhood of x0 =
α(0). Hence

TxιA(dα)(g) = d0(g ◦ ιA ◦ α)
= d0(f ◦ α)
= dα(f),

it follows that Tx0ιA is injective.

(3) By proposition 3.4.4 Tx0ιA is smooth. We wish to apply lemma 1.5.2, so
consider a genrating plot γ : U → CXx0, this is consider a plot γ†U×R→ X
with γ†(u)(0) = x. Note that V := (γ†)−1(A) ⊆ U × R is open, and
that U × {0} ⊆ V . Let u0 ∈ U then there exist a ε > 0 such that
Bε(u0)× (−ε, ε) ⊆W . And a smooth map h : R→ (−ε, ε) with d0h = 1.
Let γ̃† : Bε(u0)× R→ A be given by

γ̃†(u, ξ) := γ†(u, h(ξ))

notice that γ̃† is indeed a well defined plot, as (u, h(ξ)) ∈W . Furthermore
for f ∈ C∞(X)

u→ Tx0ιA(d[γ̃†(u)])(f) = d0(fιA ◦ γ†(u) ◦ h(ξ))

= d0h d0(f ◦ γ†(u))

= d[γ†(u)](f).
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Hence γ
loc
∈ Tx0ιA(DCx0A), it follows that Tx0ιA is a diffeomorphism.

Lemma 3.5.4 Let Y be a subspace of a regular diffeological space X. If the
inclusion Y ⊂ - X is an embedding then Y is regular.

Proof: Let x0 ∈ Y and let U ⊆ Y be D-open with x0 ∈ U . Then there exist a
D-open U ′ ⊆ X such that U = U ′ ∩ Y . By regularity of X there exist a D-open
V ′ ⊆ U ′ with x0 ∈ V ′, and a smooth map χ : X → R being 1 on V ′ and zero
outside U ′. It follows that χ|Y : Y → R is smooth and 1 on V := V ∩ Y ⊆ U ,
and zero outside U .

Example 31
The half spaces, the subspace cross and the subspace cone are regular.

Theorem 3.5.5
If a diffeological space X is locally diffeomorphic to a regular space at every point
then X is itself regular.

Proof: Let x0 ∈ X and let U ⊆ X be D open with x0 ∈ U . By assumption there
exist a local diffeomorphism φ : X → Y at x0, i.e. there exist a D-open subset
A of X such that φ(A) is D-open and φ|A : A → φ(A) is a diffeomorphism.
Consider the D-open subset U ′ := φ(U ∩A) of Y , by regularity of Y there exist
a D-open subset V ′ ⊆ U ′ with x0 ∈ V ′, and a smooth map χY : Y → R being 1
on V ′ and zero outside U ′. See fig. 3.4. Consider then a plot β : U → Y with
U ⊆ R.Then if ξ0 is a point on the boundary of β−1(φ(A)) and ξn ∈ β−1(φ(A))
a sequence converging to ξ0. Then evidently for any k ∈ N

(χY ◦ β)(k)(ξn)→ (χY ◦ β)(k)(ξ0) = 0,

(where k denotes the k’th derivative).

Figure 3.4: The sets A, U , V and φ(A), U ′, V ′. And the plot α and φ◦α|α−1(A).

Now let α : R → X be a plot, and let ξ0 be a point on the boundary of
α−1(A) and ξn ∈ αA) a sequence converging to ξ0. Then by using the above
observation we conclude that

(χY ◦ φ ◦ α)(k)(ξn)→ 0,
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as φ ◦ α|A is a plot for Y .
It follows that the map χX : X → R give by

χ(x) :=

{
χY ◦ φ(x) x ∈ A
0 x ∈ X −A

is smooth. In order to see this let α : R→ X be a plot, then

χ ◦ α(ξ) =

{
χY ◦ φ ◦ α(ξ) ξ ∈ α−1(A)
0 ξ ∈ α−(X −A)

evidently this map is smooth everywhere except on the boundary of α−1(A). By
the above it follows that all of its derivatives are continuous also on the boundary
of α−1(A), this implies smoothness. Hence χ is smooth by lemma 2.4.4.

Lemma 3.5.6 Let X and Y be diffeological spaces. Then

(i) If ϕ : X → Y is a diffeomorphism then TxX ' Tϕ(x)Y .

(ii) If X and Y are regular spaces and ϕ : X → Y is a local diffeomorphism
at x ∈ X then TxX ' Tϕ(x)Y .

Proof: Assume first that ϕ : X → Y is a diffeomorphism then note that by the
chain rule (theorem 3.4.6)

Tϕ(x)ϕ
−1Txϕ = Tx(ϕ−1 ◦ ϕ) = TxidX = idTxX ,

and TxϕTϕ(x)ϕ
−1 = idTϕ(x)Y . Hence, in this case, TxX ' Tϕ(x)Y . Consider

now the case where ϕ is a local diffeomorphism at x ∈ X. Then there exist a
D-open neighborhood A of x such that ϕ(A) is D-open and ϕ : A → ϕ(A) is a
diffeomorphism. And

TxX ' TxA since X is regular
' Tϕ(x)ϕ(A) by the case above
' Tϕ(x)Y.

3.5.1 Examples of model spaces modelled on regular spaces

Let Qi be a collection of regular diffeological spaces, and let for each i ∈ I
qi be a point of Qi. We shall say that a diffeological space M is modelled
on the collection {(Qi, qi)}i∈I if for each point m ∈ M there exist a local
diffeomorphism into one of the Q′is and such that φ(m) = qi.

Example 32
Finite dimensional mainfolds are modelled on (Rn, 0).

Example 33
Finite dimensional manifolds with boundary are modelled on {(Rn, 0), (Hn, 0)}.
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Figure 3.5: A space model on {(X , 0), (R, 0)}.

Figure 3.6: A space model on {(Λ, 0), (R2, 0)}.



Chapter 4

Diffeological bundles

The fibres of a tangent bundle should be the tangent spaces. Hence, by consid-
ering for example the cross example 22, it is clear that we can not, in general,
assumed that the tangent bundles are locally trivial. So we need a notion of
diffeological bundles which can handle this. The approach we shall take is very
general, it is however worth noting that all of the constructions we define carries
over to there natural counterpart for trivial bundles. For example we will define
the product of two bundles over the same base base, as discussed later in this
chapter. If the two bundles are locally trivial with fibres respectively F1 and F2

then there product is locally trivial with fibres F1 × F2.

4.1 Bundles
Definition 4.1.1 A bundle over the space B, is a space E together with a
subduction π : E → B.

Usually we shall denote a bundle by E
π- B, the space B is called the

base space, E the total space and π the bundle projection. If the base space
and the projection are understood from the context we shall sometimes denote
a bundle just by the total space E.

Definition 4.1.2 Let E π→ B and E′
π′→ B′ be bundles. A bundle morphism

from E to E′, is a pair of smooth maps A : E → E′ and a : B → B′, such that

E
A - E′

B

π

? a - B′

π′

?

commutes.

Note that we have a natural composition of bundle morphisms. In fact the
collection of diffeological bundles together with bundle morphisms makes up a
category. We shall sometimes denote a bundle morphism by (A, a).

57
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Definition 4.1.3 Let E
π- B be a bundle. The fiber over b ∈ B is the

supspace Eb := π−1(b) of E.

Note that if E is a bundle over B, then the fiber over b ∈ B is denote by Eb.
Furthermore we shall by ιb denote the canonical inclusion Eb ⊂ - E, by the
above definition this is an induction. By lemma 1.4.9, the canonical injection∐
b∈B Eb

⊂ - E is a smooth bijection.

Definition 4.1.4 A smooth section of a bundle E
π- B is a smooth map

s : B → E such that π ◦ s = idB .

Given a diffeological bundle E → B, we shall by Γ(E) denote the set of
smooth sections of E. Γ(E) becomes a diffeological space as a subspace of
C∞(B,E), i.e. Γ(E) is given the functional diffeology.

Example 34
Consider the cone Λ with the subspace diffeology (see example 13). Define a
projection π : Λ → R by setting π(x, y, z) := z. Clearly π is smooth, hence
−→π (DΛ) ⊆ DR. Consider now a plot for R, i.e. a smooth map α : U → R,
then define a map β : U → R3 by setting β(u) := (α(u), 0, α(u)). Clearly β
is smooth, and its range is contained in the cone, hence it is a plot for DΛ. It
follows that DR ⊆ −→π (DΛ), as π ◦ β = α. Hence π is a subduction. And the
conclusion is that we may view the cone as a bundle over R.

It is not hard to see that the fiber over a non zero point is diffeomorphic to
S1. And that the fiber over zero is simply a point. Examples of sections on the
subspace cone are

sθ := (cos(θ)ξ, sin(θ)ξ, ξ),

for θ ∈ R. See fig. 4.1.

Figure 4.1: The subspace cone as a bundle over R, see example 34.

4.1.1 Trivial bundles

Definition 4.1.5 Let B be a diffeological space, and F a diffeological vector
space. A trivial bundle over B with fiber F , is simply a bundle isomorphic (in
the category of bundles) to the bundle B × F prB- B.
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We shall sometimes denote the trivial bundle B × F prB- B by FB .

Remark 4.1.6 Note that we may assume that the trivializing isomorphism is of the
form (Φ, idB). As given any trivializing isomorphism (Φ, φ) we may construct the
following bundle isomorphism

E
Φ- B × F

(φ−1(b), v)- B × F

B

π

? φ - B

prB

? φ−1

- B

prB

?

Example 35
Let F be a diffeological space. And denote by FB the trivial bundle B×F → B.
Then as diffeological spaces

Γ(FB) ' C∞(B,F ).

4.1.2 Subbundles

Definition 4.1.7 Let E
π- B and E′

π- B′ be diffeological vector bundles.
We shall say that E is a subbundle of E′ if

(i) E is a subset of E′ and the canonical injection E ⊂
ιT- E′ is an induction.

(ii) B is a subset of B′ and the canonical injection B ⊂
ιB- B′ is an induction.

(iii) (ιT , ιB) is a bundle morphism.

Trivializing subbundles

Consider two diffeological bundles E
π- B and E′

π- B′. And assume that
E is a subbundle of E′, assume furthermore that E′ is trivial. That is we have
a vector bundle isomorphism (Φ : E′ → B′ × F, idB′) trivializing E′. Consider
then the composition

E ⊂
ιT - E′

Φ- B′ × F

B

π

?
⊂

ιB - B′

π′

? id - B′

prB′

?

And note that if for any two b1, b2 ∈ B it holds that

prF ◦ Φ ◦ ιT (Eb1) = prF ◦ Φ ◦ ιT (Eb2)

then E is trivial with fiber prF ◦ Φ ◦ ιT (Eb1).
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Figure 4.2: An example of a non trivial subbundle of the cylinder.

Figure 4.3: An example of a trivial subbundle of the cylinder.

4.2 Pre-bundles
Definition 4.2.1 Given a collection of sets {Eb}b∈B index by a diffeological
space B. Consider the disjoint union E := ∪b∈BEb, and the map π : E →
B mapping Eb to b. The triple E

π- B is said to be a pre-bundle with
fibers {Eb}b∈B . A bundle diffeology for E is any diffeology DE on E such that
−→π (DE) = DB .

In other words a bundle diffeology on a pre-bundle is any diffeology that will
make the pre-bundle a diffeological bundle. Often we shall, when constructing
a bundle, specify a pre-bundle along with diffeologies for the fibers. It is then
important to check that a given bundle diffeology induces the correct diffeology
on the fibers. Notice that a pre-bundle may become a bundle in many ways,
even if we have specified the diffeologies of the fibers. That is, there are many
bundle diffeologies for a pre-bundle which will induce the same diffeologies on
the fibers. We may consider the bundle∐

b∈B

Eb
π- B
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This is the “smallest” bundle having as its fibers the diffeological spaces {Eb}b∈B ,
i.e. the coproduct diffeology is the weakest bundle diffeology inducing specific
diffeologies on the fibers. We may think of the fibers in this bundle as separated,
the bundle diffeology then determines how the fibers are to be glued together.

4.2.1 Fiberwize defined maps

Definition 4.2.2 Let E
π- B and E′

π′- B be pre-bundles. Assume given
a collection of maps {ϕb : Eb → E′b}b∈B . We shall then say that the map
ϕ : E → E′ defined by

ϕ(σ) := ι̂b ◦ ϕπ(σ)(σ)

is fiberwise defined by {ϕb}.

Figure 4.4: Fiberwise defined maps.

Assuming that E and E′ are bundles, we note that if a fiberwise defined
map is smooth then it is a bundle morphism. And if it is a diffeomorphism then
it is a bundle isomorphism.

Another trivial but usefull observation is that, if φ : E → E′ is fiberwise
defined then π′ ◦ φ = π. Furthermore the push forward of a fiberwise defined
map is a bundle diffeology as we show below.

Lemma 4.2.3 Let E
π- B be a bundle and E′

π′- B a pre-bundle. If
ϕ : E → E′ is fiberwise defined then −→ϕ (DE) is a bundle diffeology for E′.
And the fiber over b ∈ B of the bundle (E′,−→ϕ (DE)) is the diffeological space
(E′b,
−→ϕb(DEb

)), where DEb
is the diffeology of the fiber over b of the bundle E.
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Proof: The first part of the claim follows by the observation that
−→
π′ ◦ −→ϕ (DE) =

−−−→
π′ ◦ ϕ(DE) = −→π (DE).

For the second claim note that
−→
φb(DEb

) = 〈φb ◦ DEb
〉 = 〈φ ◦ DEb

〉 ⊆
−→
φ (DE)

hence
−→
φb(DEb

) ⊆
{
α ∈ Par(E′b) | α ∈

−→
φ (DE)

}
. For the other inclusion let

α : U → E′b be a plot for
−→
φ (DE). Then note that given any u0 ∈ U , by the

definition of the pushforward (definition 1.3.4), there exist an open U0 ⊆ U with
u0 ∈ U0 and such that α|U0 is constant or α|U0 = φ ◦ β for a plot β ∈ DE . In
any case it is evident that

π ◦ β(u) = π′ ◦ φ ◦ β(u) = π′ ◦ α|U0(u) = b

for all u ∈ U0, hence β ∈ DEb
. It follows that α|U0 ∈

−→
φb(DEb

), and by locality
this implies that α ∈

−→
φb(DEb

).

4.3 Product bundles

Let n ∈ N and let E1
π1- B, . . . , En

πn- B be a collection of bundles over
the same base space B. Consider then the pre-bundle

E1 × · · · × En :=
⋃
b∈B

(E1)b × · · · × (En)b.

Definition 4.3.1 The product bundle diffeology on the pre-bundle E1×· · ·×En
is the strong diffeology induced by the fiberwise defined projections Pi : E1 ×
· · ·×En → Ei. The resulting bundle E1× · · ·×En is called the product bundle.

Note that by lemma 1.3.15 the product bundle diffeology is the collection

{γ ∈ Par(E1 × · · · × En) | Pi ◦ γ is smooth for all i = 1, . . . , n} .

It is a bundle diffeology, as we shall see in the proposition given below. If
σi ∈ Ei with π(σi) = b for i = 1, . . . , n, then the element (σ1, . . . , σn) is a
well defined element in the fiber over b of the product bundle. Note that each
element σ in the product bundle is of this form, namely (P1(σ), . . . ,Pn(σ)).
Given n plots αi : U → Ei with π1 ◦ α1 = · · · = πn ◦ αn, we define a map
α1 × · · · × αn : U → E1 × · · · × En by setting

α1 × · · · × αn(u) = (α1(u), . . . , αn(u)),

note that this is a plot for the product bundle diffeology. And that given any
plot α : U → E1 × · · · × En

α(u) = α1 × · · · × αn(u)

where αi := Pi ◦ α are plots. Futher more a map φ : E1 × E2 → E3 between
bundles is smooth if and only if

u→ φ(α1 × α2(u))

is smooth for all pairs of plots αi : U → Ei (i = 1, 2) with π ◦ α1 = π ◦ α2.
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Proposition 4.3.2 The product bundle diffeology is a bundle diffeology. And
the fiber over b ∈ B is the diffeological product (E1)b × · · · × (En)b.

Proof: Let us first show that the product diffeology is in fact a bundle diffeology.
That is, we must show that π is a subduction. Let α : U → E1 × · · · ×En be a
plot for the product bundle diffeology, then P1 ◦ α is a plot for E1, hence

π ◦ α = π ◦ P1 ◦ α ∈ −→π (DE1) = DB .

That is π is smooth. Let β : U → B be a plot for the base space, as π is a
subduction we may, by restricting the domain, assume that there exist plots
αi : U → Ei such that π ◦ αi = β (see remark 1.3.11). Let

α(u) := α1 × · · · × αn(u)

evidently α is a plot for the product bundle diffeology with π ◦ α = β. This
implies that π is a subduction.

Secondly note that the subspace diffeology of the fiber over b ∈ B is simply

{α ∈ Par((E1)b × · · · × (En)b) | Pi ◦ α is smooth for all i = 1, . . . , n}
= {α ∈ Par((E1)b × · · · × (En)b) | pri ◦ α is smooth for all i = 1, . . . , n}

hence it is the diffeological product, as claimed.

Theorem 4.3.3
If E1

π- B, . . . , En
π- B are trivial with fibers respectively F1, . . . , Fn.

Then the product bundle E1×· · ·×En
π- B is trivial with fiber F1×· · ·×Fn.

Proof: By assumption we have, for each i = 1, . . . , n, bundle isomorphisms

(Φi : Ei → B × Fi, idB)

Define a map Ψ : E1 × · · · × En → B × F1 × · · · × Fn by

Ψ(σ) :=
(
π(σ),prF1

◦ Φ1(P1(σ)), . . . ,prFn
◦ Φn(Pn(σ))

)
, (4.1)

we claim that (Ψ, idB) is a bundle isomorphism. It is clearly a bijection and if
we can show that it is a diffeomorphism then it easily follows that it is a bundle
isomorphism. It is smooth since for any plot α : U → E1 × · · · × En the map

u→ Ψ(α(u)) =
(
π ◦ α(u), (prF1

◦ Φ1(P1 ◦ α(u)), . . . ,prFn
◦ Φn(Pn ◦ α(u))

)
is the composition of smooth maps, hence it is smooth. Next note that (for
ςi ∈ Fi)

Ψ−1(b, (ς1, . . . , ςn)) = (Φ−1
1 (b, ς1), . . . ,Φ−1

n (b, ςn))

is also clearly smooth.
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Figure 4.5: Examples of product bundles.



Chapter 5

Diffeological vector bundles

This chapter is a continuation of the previous chapter. We shall study diffeolog-
ical vector bundles, we shall mainly be concerned with what we shall call regular
vector bundles (not to be confused with regular spaces). In section 5.2 we define
the tensor product of vector bundles, which will be a bundle with fibres tensor
products. In section 5.3 we define the dual of a vector bundle, this will be a
bundle with fibres the dual spaces. By the statements proved in these sections
it will be evident, that for locally trivial bundles the tensor product bundle is
locally trivial with fibres the tensor products. Furthermore any locally trivial
bundle with finite dimensional fibres is self dual.

Finally in section 5.4 we discuss the dual of the tensor product bundle, as
this will be helpful in the following chapter.

5.1 Vector bundles
Definition 5.1.1 A vector bundle is a diffeological bundle, where each fiber
has the structure of a diffeological vector space.

Definition 5.1.2 Let E
π- B and E′

π′- B′ be vector bundles. A vector
bundle morphism from E to E′ is a bundle morphism (A, a) from E to E′, such
that for each b ∈ B the map

A|Eb
: Eb → E′a(b)

is linear.

The composition of two vector bundle morphism is again a vector bundle
morphism. It is therefor clear that the collection of vector bundles together with
vector bundles morphisms form a subcategory of the category of bundles. Note,
in particular, that a trivialization of a vector bundle must be fiberwise linear.
Furthermore if E is a vector subbundle of E′ then the canonical injection must
be fiberwise linear.

A vector pre-bundle is a pre-bundle where each fiber carries the structure of
a vector space. Note that since a vector space structure on a set is not unique,
a triple E

π- B may be a vector pre-bundle in many ways. The point is that
when we say that a triple E

π- B is a vector pre-bundle we are specifying

65
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the vector space structure on each fiber. A vector bundle diffeology for a vector
pre-bundle is then a diffeology on E such that each fiber becomes a diffeological
vector bundle.

Regular vector bundles

Let E be a vector bundle over B. The fiberwise addition on E is a map

E × E → E

(where E ×E is the product bundle) defined as addition on each fiber. Let RB
denote the trivial bundle B ×R→ B. Then fiberwise scalar multiplication is a
map

RB × E → E.

defined as scalar multiplication on each fiber.

Definition 5.1.3 A vector bundle is said to be regular if fiberwise addition and
scalar multiplication is smooth.

Example 36
For examples of non regular diffeological vector bundles, see figs. 5.1 and 5.2.
And for an example of a regular but non locally trivial vector bundle see fig. 5.3.

Figure 5.1: A non regular vector bundle over R, with fibers R.
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Figure 5.2: A connected non regular vector bundle over R, with fibers R.

Figure 5.3: A regular vector bundle with two types of fibres R2 and R.

Regular vector bundles have the following desirable property;
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Lemma 5.1.4 If E is a regular diffeological vector bundle over B then Γ(E) is
a C∞(B) module.

Proof: Let s1, s2 ∈ Γ(E) and f ∈ C∞(B). If we let

(s1 + s2)(b) := s1(b) + s2(b) and fs1(b) := f(b)s1(b)

then as fiberwise addition and scalar multiplication are smooth it follows that
s1 + s2 and fs1 are sections.

5.1.1 The Weak vector bundle diffeology

Definition 5.1.5 Let E
π- B be a vector pre-bundle and let DE be any

bundle diffeology on E. Then the weak vector bundle diffeology on E generated
by DE is the weak diffeology generated by parametrizations of the form

u→
n∑
i=1

λi(u)αi(u)

with λi : U → R smooth and αi : U → E plots for DE with π◦α1 = · · · = π◦αn.

We shall use the notation
∑
DE to indicate the weak vector bundle diffeology

generated by DE . Note the notational similarity with the weak diffeology for
vector spaces. Hopefully, this will not lead to confusion.

Theorem 5.1.6
Let E

π- B be a vector pre-bundle, and let DE be any bundle diffeology on
E. Then the weak vector bundle diffeology on E generated by DE is the weakest
regular vector bundle diffeology on E containing DE. And for each b ∈ B, the
fiber over b is the diffeological vector space (Eb,

∑
DEb

).

Remark 5.1.7 Note that DEb = {α ∈ Par(Eb) | α ∈ DE} is the diffeology of the fiber
over b ∈ B of the bundle (E,DE).

Proof (Proof of theorem 5.1.6): Let γ : U → E be a plot for the weak vector
bundle diffeology, then there exist a plot γ̂ : U → E for DE such that π◦γ = π◦γ̂
hence

−→π
(∑

DE
)

= −→π (DE).

That is
∑
DE is a bundle diffeology. Let b ∈ B, DEb

= {α ∈ Par(Eb) | α ∈ DE}
and let Db denote the subspace diffeology of the fiber over b of the weak vector
bundle diffeology. We which to show that

∑
DEb

= Db (note that here
∑
DEb

denote the weak vector space diffeology, see definition 2.2.1). Let γ : U → Eb
be a plot for Db, hence

γ(u) =
n∑
i=1

λi(u)γi(u)

where λi is smooth, π ◦ γi(u) = b for each u ∈ U and γi ∈ DE . But this implies
that γi ∈ DEb

hence γ ∈
∑
DEb

. The other inclusion is, also, obvious.
Let D be another regular vector bundle diffeology on E containing DE . Since

D is regular, each genrating plot for
∑
DE must be smooth, hence

∑
DE ⊆ D.

It follows that the weak vector bundle diffeology
∑
DE is the weakest regular

vector bundle diffeology on E containing DE .
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Lemma 5.1.8 Let E
π- B be a vector pre-bundle and let DE be any bundle

diffeology on E. Then a fiberwise linear diffeomorphism

Φ : (E,DE)→ (F,DF )×B

becomes a trivialization of vector bundles (E,
∑
DE)→ (F,

∑
DF )×B.

Proof: We must show that

Φ :
(
E,
∑
DE
)
→
(
F,
∑
DF
)
×B

is a diffeomorphism. Consider n smooth functions and n plots for DE , say
λi : U → R and αi : U → E, with π ◦ α1 = · · · = π ◦ αn. Then

prF ◦ Φ

(
n∑
i=1

λi(u)αi(u)

)
=

n∑
i=1

λi(u)prF ◦ Φ(αi(u))

hence Φ is smooth, as u → prF ◦ Φ(αi(u)) is a plot for DF . Next, consider
a generating plot for (F,

∑
DF ) × B, that is (by lemma 1.4.7) n ∈ N smooth

functions and n plots for DF , say λi : U → R and αi : U → F , and in addition
also a plot β : V → B. Then let

γi := Φ−1 ◦ αi × β

which is a plot for DE , and

(u, v)→ Φ

(
n∑
i=1

λi(u, v)γi(u)

)
=

(
n∑
i=1

λi(u)αi(u), β(v)

)

which is our generating plot. It follows, by lemma 1.5.2, that Φ is a diffeomor-
phism.

5.2 Tensor product bundles

Let n ∈ N and let E1
π- B, . . . , En

π- B be a collection of vector bundles
over the same base space B. Consider then the vector pre-bundle

E1 ⊗ · · · ⊗ En :=
⋃
b∈B

((E1)b ⊗ · · · ⊗ (En)b, φb)

Definition 5.2.1 The tensor product bundle diffeology on the vector pre-bundle
E1 ⊗ · · · ⊗ En is the weak vector bundle diffeology∑−→

φ (DE1×···×En
).

Where DE1×···×En
is the product bundle diffeology and φ : E1 × · · · × En →

E1 ⊗ · · · ⊗ En is the fiberwise defined tensor product map 2.1. The resulting
vector bundle E1 ⊗ · · · ⊗ En is called the tensor product bundle.

Proposition 5.2.2 The tensor product bundle is a vector bundle. And the fiber
over b ∈ B of the tensor product bundle E1⊗ · · · ⊗En is the diffeological tensor
product ((E1)b ⊗ · · · ⊗ (En)b, φb).
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Proof: By the first parts of lemma 4.2.3 and theorem 5.1.6 it follows that the
tensor product bundle diffeology is a vector bundle diffeology. Hence the tensor
product bundle is a vector bundle. For the second part of the proposition note
that by theorem 5.1.6 and lemma 4.2.3 the diffeology of the fiber over b ∈ B of
the tensor bundle is ∑−→

φb(D(E1)b×···×(En)b
)

but this is the diffeological tensor product ((E1)b ⊗ · · · ⊗ (En)b, φb), as defined
in section 2.3.

Theorem 5.2.3
If the vector bundles E1

π1- B, . . . , En
πn- B are trivial with fibers respec-

tively F1, . . . , Fn. Then the tensor product bundle E1⊗· · ·⊗En
π- B is trivial

with fiber F1 ⊗ · · · ⊗ Fn.

Proof: By assumption and theorem 4.3.3 the map 4.1 (denoted Ψ) is a trivial-
ization. Let φ′ : F1 × · · · × Fn → F1 ⊗ · · · ⊗ Fn denote the tensor product, and
let Ψ′ := φ′ ◦ prF1×···×Fn

◦Ψ. Then for (σ1, . . . , σn) ∈ (E1)b × · · · × (En)b it is
evident that

Ψ′(σ1, . . . , σn) = φ′(prF1
◦ Φ1(σ1) . . . ,prFn

◦ Φn(σn)),

where Φi : Ei → B × Fi are the fiberwise linear trivializations. It follows that
Φ′ is multilinear on each fiber. By theorem 2.3.1 there exist for each b ∈ B a
unique linear map

Φb : (E1)b ⊗ · · · ⊗ (En)b → F1 ⊗ · · · ⊗ Fn ×B

such that Φb ◦φb = Ψ′|(E1)b×···×(En)b
, where φb : (E1)b× · · · × (En)b → (E1)b⊗

· · ·⊗ (En)b is the tensor product. Let now Φ : E1⊗· · ·⊗En → B×F1⊗· · ·⊗Fn
be fiberwise defined by the collection {Φb}. Hence

prF1⊗···⊗Fn
◦ Φ ◦ φ = Ψ′,

where φ : E1×· · ·×En → E1⊗· · ·⊗En is the fiberwise defined tensor product.
We shall show below (1) that Φ is bijective and (2) that it is a diffeomorphism
between the diffeological spaces(
E1 ⊗ · · · ⊗ En,

−→
φ (DE1×···×En

)
)
→
(
F1 ⊗ · · · ⊗ Fn ×B,

〈−→
φ′(DF1×···×Fn

)×DB
〉)

.

This will by lemma 5.1.8 implie that

Φ : E1 ⊗ · · · ⊗ En → F1 ⊗ · · · ⊗ Fn ×B,

is a trivialization.

(1) Φb is surjective as it is linear, and given ρ1⊗· · ·⊗ρn ∈ F1⊗· · ·⊗Fn there
exist (by using the bijectiveness of Φ1, . . . ,Φn) (σ1, . . . , σn) ∈ (E1)b×· · ·×
(En)b such that

Ψ′(σ1, . . . , σn) = ρ1 ⊗ · · · ⊗ ρn.

Furthermore Φb is injective as it is evident that ker Φb = {0}. It follows
that Φ is bijective.



Diffeological vector bundles 71

(2) First note that prF1⊗···⊗Fn
◦ Φ ◦ φ = Ψ′ is smooth, by lemma 1.3.14 (iii)

this implies that prF1⊗···⊗Fn
◦ Φ is smooth. Furthermore it is clear that

prB ◦ Φ = π is smooth. By proposition 1.4.2 the two above observations
implies that Φ is smooth. Consider now plots α : U → F1 × · · · × Fn and
β : V → B, then define a plot for

−→
φ (DE1×···×En) by

γ := φ ◦Ψ−1 ◦ α× β.

Now

prF1⊗···⊗Fn
◦ Φ ◦ γ = prF1⊗···⊗Fn

◦ Φ ◦ φ ◦Ψ−1 ◦ α× β
= φ′ ◦ prF1×···×Fn

◦Ψ ◦Ψ−1 ◦ α× β
= φ′ ◦ α ◦ prU

and
prB ◦ Φ ◦ γ = π ◦ γ = β ◦ prV

hence Φ◦γ = (φ′ ◦α)×β. Since any plot for 〈DF1×···×Fn)×DB〉 is locally
of the form (φ′ ◦ α)× β or constant, it follows by lemma 1.5.2 that Φ is a
diffeomorphism.

5.3 Dual bundles

Consider two pre-bundles, over B, say E
π- B and E′

π′- B. For any two
parametrizations γ : U → E and α : V → E′ let

∆γ,α := {(u, v) ∈ U × V | π ◦ γ(u) = π′ ◦ α(v)} .

Let E
π- B be a vector bundle. And consider the vector pre-bundle

E∗ :=
⋃
b∈B

L∞(Eb,R).

Definition 5.3.1 The dual bundle diffeology for the vector pre-bundle E∗ is
the collection of parametrizations γ : U → E∗ such that

(i) π ◦ γ is smooth.

(ii) For all plots α : V → E and any smooth map c = (c1, c2) : W → U × V
with Im(c) ⊆ ∆γ,α the map

w → γ(c1(w))[α(c2(w))]

is smooth.

The dual bundle diffeology is, as we shall see, a regular bundle diffeology.
The resulting vector bundle E∗ is called the dual bundle.

Example 37 (Zero maps)
Let 0b : Eb → R denote the zero map. And let α : U → B be a plot for the base
space B. Then define a map 0α : U → E∗ by

0α(u) := 0α(u).

0α is clearly smooth (that is a plot for the dual bundle diffeology).
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Proposition 5.3.2 Definition 5.3.1 defines a regular vector bundle diffeology
on E∗. And the fiber over b ∈ B is the diffeological vector space L∞(Eb,R).

Proof: We must show (1) that definition 5.3.1 indeed defines a diffeology, (2)
that π is a subduction and (3) we need to show that the subspace diffeology for
the fibers L∞(Eb,R) are in fact the functional diffeology. And (4) that fiberwise
addition and scalar multiplication is smooth.

(1) Covering.: It is not hard to see that every constant parametrization is a
plot.

Smoothness.: Consider a plot γ for the dual diffeology and let γ′ = γ◦h for
a smooth map h : U → Dom(γ). The task is then to show that γ′ is a plot
for the dual diffeology. So let α : V → E be a plot and consider a smooth
map c = (c1, c2) : W → U × V with Im(c) ⊆ ∆γ′,α. Let c′ := (h ◦ c1, c2)
then c′ : W → Dom(γ)× V is smooth and for each w ∈W

π ◦ γ(h ◦ c1(w)) = π ◦ γ′(c1(w)) = π ◦ α(c2(w))

that is Im(c′) ⊆ ∆γ,α. Hence

w → γ′(c1(w))[α(c2(w))] = γ(c′1(w))[α(c′2(w))]

is smooth.

Locality.: Assume that γ : U → E∗ locally is a plot for the dual diffeology
(i.e. locally belongs to the diffeology). And consider, as above, a plot
α : V → E and a smooth map c : W → U × V with Im(c) ⊆ ∆γ,α. We
then wish to show that the map

w → γ(c1(w))[α(c2(w))]

is smooth. We only need to show that that this map is smooth in a
neighbourhood of every point of W , so let w0 ∈ W and set (u0, v0) :=
c(w0). By assumption there exist a open set U0 ⊂ U with u0 ∈ U0

and such that γ′ := γ|U0 is a plot for the dual diffeology. If we now let
W0 := c−1(U0 × V ) and c′ := c|W0 then Im(c′) ⊆ ∆γ′,α, hence

w → γ(c1(w))[α(c2(w))] = γ′(c′1(w))[α(c′2)]

is smooth.

(2) By definition π is smooth, hence by lemma 1.3.6 −→π (DE∗) ⊆ DB . Let
β : U → B be a plot for B then the map 0β : U → E∗ is a plot (see
example 37) and π ◦ 0β = β. It follows that DB ⊆ 〈π ◦ DE∗〉 = −→π (DE∗).
Since π is also surjective it is seen to be a subduction.

(3) At each point b ∈ B we must show that the subspace diffeology of the
fiber is the functional diffeology. So let γ : U → E∗ be a plot with range
contained in the fiber over b, that is in the vector space L∞(Eb,R). Let
α : V → Eb be a plot, then

(u, v)→ γ(u)[α(v)] = γ · α(u, v)
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is smooth, i.e γ is a plot for the functional diffeology on the fiber L∞(Eb,R).
On the other hand, let γ : U → L∞(Eb,R) be a plot for the functional
diffeology on the fiber. Let α : V → E be any plot and consider a smooth
map c = (c1, c2) : W → U × V with Im(c) ⊆ ∆γ,α. Then

w → γ(c1(w))[α(c2(w))] = γ · α ◦ c(w)

is smooth, as it is the composition of smooth maps.

(4) Let γ : U → E∗ × E∗ be a plot, and let γi = Pi ◦ γ for i = 1, 2. We must
show that

u→ γ1(u) + γ2(u)

is a plot for E∗. So let α : V → E be a plot and consider a smooth map
c = (c1, c2) : W → U × V with Im(c) ⊆ ∆γ,α. Then

w → (γ1(c1(w)) + γ2(c2(w))) [α(c2(w))]
= γ1(c1(w))[α(c2(w))] + γ2(c1(w))[α(c2(w))]

which is smooth, since the γi’s are plots for E∗.

Lemma 5.3.3 The diffeology defined in definition 5.3.1 is the strongest diffe-
ology on E∗ such that (i) and (ii) below holds for all plots γ : U → E∗.

(i) π ◦ γ is smooth.

(ii) For any plot α : U → E with π ◦ γ = π ◦ α the map u → γ(u)[α(u)] is
smooth.

Proof: Let γ : U → E∗ be a plot for a diffeology D′ satisfying (i) and (ii). We
must then show that γ is a plot for the dual bundle diffeology, as defined in
definition 5.3.1. Let α : V → E be a plot and c = (c1, c2) : W → U × V a
smooth map with Im(c) ⊆ ∆γ,α, then the map

W 3 w → γ ◦ c1(w)[α ◦ c2(w)]

is smooth, by (ii) and the smoothness of D′ and DE .

The above lemma implies the following important proposition.

Proposition 5.3.4 For any smooth section s of E∗ and any smooth section t
of E the map

B 3 b→ s(b)[t(b)]

is smooth.

Theorem 5.3.5
If E

π- B is trivial with fiber F , then E∗
π∗- B is trivial with fiber L∞(F,R).

Proof: Since E is trivial we have a vector bundle isomorphism

(Φ : B × F → E, idB).
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Let φb : F → Eb denote the induced linear diffeomorphism on the fibers, i.e
φb := Φ|{b}×F consider as a map onto Eb. Define Ψ : E∗ → B × L∞(F,R) by
setting

Ψ(σ) := (π(σ), σ ◦ φπ(σ)),

we claim that (Ψ, idB) is a vector bundle isomorphism. The only thing which is
not clear is that Ψ is diffeomorphism, hence that it and its inverse are smooth.
We shall show (1) that Ψ is smooth and (2) that its inverse is smooth.

(1) Let γ : U → E∗ be a plot for the dual diffeology, we then wish to show
that the map

u→ Ψ(γ(u)) =
(
π∗ ◦ γ(u), γ(u) ◦ φπ∗◦γ(u)

)
is smooth. Hence we must show that given any plot α : V → F the map

(u, v)→ γ(u)
[
φπ◦γ(u)(α(v))

]
(5.1)

is smooth. Now π ◦γ(u) = π ◦Φ(π ◦γ(u), α(v)) for all (u, v) ∈ U ×V , and
the map

(u, v)→ Φ(π ◦ γ(u), α(v)) = φπ◦γ(u)(α(v))

is smooth. Hence by lemma 5.3.3 the map 5.1 is smooth.

(2) Our first observation is that inverse Ψ−1 : B × L∞(F,R) → E∗, of Ψ, is
given by

Ψ−1(b, σ) = ιb
[
σ ◦ φ−1

b

]
where ιb is the canonical inclusion L∞(Eb,R) ⊂ - E∗. In order to verify
this observation note that

Ψ ◦Ψ−1(b, σ) = Ψ
(
ιb
[
σ ◦ φ−1

b

])
= (b, σ ◦ φ−1

b ◦ φb) = (b, σ)
and

Ψ−1 ◦Ψ(σ) = Ψ−1(π(σ), σ ◦ φπ(σ)) = ιπ(σ)(σ) = σ.

The task is to show that Ψ−1 is smooth. Consider a plot for B×L∞(F,R)
say α = (α1, α2) : U → B ×L∞(F,R). Then define a map γ : U → E∗ by

γ(u) := Ψ−1(α(u)) = iα1(u)

[
α2(u) ◦ φ−1

α1(u)

]
.

If we can show that γ is a plot for the dual bundle diffeology we are
done. That is we must show (i) and (ii) of definition 5.3.1. (i) is easy as
π∗ ◦ γ = α1 which is smooth. For (ii) consider a plot β : V → E and a
smooth map c : W → U × V with Im(c) ⊆ ∆γ,β then

γ(c1(w))[β(c2(w))] = α2(c1(w)) ◦ φ−1
α1(c1(w))[β(c2(w))]

= α2(c1(w))
[
prF ◦ Φ−1(β(c2(w)))

]
which is smooth.

Example 38
Let B be a diffeological space, then evidently (Rn)∗B ' (Rn)B.
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5.4 The Dual of the tensor product bundle
Consider n vector bundles, say E1, . . . , En over B. Then let

T := (E1 ⊗ · · · ⊗ En)∗,

and consider a plot γ : U → T . By propositions 5.2.2 and 5.3.2 and theo-
rem 2.3.5 the fiber over b of T is

L∞((E1)b ⊗ · · · ⊗ (En)b,R) ' L∞Mult((E1)b × · · · × (En)b,R),

hence we may, for each u ∈ U consider γ(u) as a multilinear map (E1)π◦γ(u) ×
· · · × (En)π◦γ(u) → R. To be precise we see, by looking at the proofs of sec-
tion 2.3, that the map defined by

γ̃(u) := γ(u) ◦ φπ◦γ(u)

is precisely this, to γ associated, multilinear map. Where φπ◦γ(u) is the tensor
product map for the tensor product of the fibers over π◦γ(u). We shall however
in general not use the notation γ̃, but also denote the to γ associated multilinear
map by γ.

Theorem 5.4.1
A map γ : U → T is smooth if and only if

(i) π ◦ γ̃ is smooth.

(ii) Given any n plots αi : V → Ei with π ◦α1 = · · · = π ◦αn, and any smooth
map c : W → U × V with Im(c) ⊆ ∆γ,α1 the map

w → γ̃(c1(w))[α1(c2(u)), . . . , αn(c2(w))]

is smooth.

Proof: Note that

γ̃(c1(w))[α1(c2(w)), . . . , αn(c2(w))] = γ ◦ φπ◦γ(c1(w))[α1(c2(w)), . . . , αn(c2(w))]
= γ(c1(w))[φ ◦ α1 × · · · × αn(c2(w))]

as the fiberwise tensor product φ : E1×· · ·×En → E1⊗· · ·⊗En is smooth, one
implication follows (by lemma 5.3.3). For the other implication assume that (i)
and (ii) holds. And let β : V → E1 ⊗ · · · ⊗ En be a generating plot, hence

β(v) =
n∑
i=1

λi(v)φ ◦ βi(v)

with λi : V → R smooth and βi : V → E1 × · · · × En plots for the product
diffeology. Let c : W → U × V be any smooth map with Im(c) ⊆ ∆γ,α1 then

γ(c1(w))[β(c2(w))] =
n∑
i=1

λi(c2(w))γ(c1(w))[φ ◦ βi(c2(w))]

=
n∑
i=1

λi(c2(w))γ̃(c1(w))[βi(c2(w))]

by the assumptions (and the discussion in section 4.3) it follows that γ is
smooth.
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Corollary Let αi : U → Ei for i = 1, . . . , n be plots, with π ◦ αi = π ◦ γ. Then
the function

u→ γ(u)[α1(u), . . . , αn(u)]

is smooth.



Chapter 6

Differential forms in
diffeology

We shall in this chapter reach the main objective of this thesis, by constructing
a tensor bundle and proving that it is sensible, as discussed in the introduction.
In sections 6.1 and 6.2 we construct the tangent bundle TX, of a diffeological
space X. And in section 6.3 we define the k-tensor bundle as

T k(X) :=

TX ⊗ · · · ⊗ TX︸ ︷︷ ︸
k copies

∗ .
In this last section we also defines differential forms and we shall see that each
differential form naturally induces a D-form.

Having in mind the results on diffeological bundles from the previous chap-
ters, as well as the requirements for the tensor bundle, as discussed in the
introduction, we arrive at the following requirements for the tangent bundle:

(a) The fibre over x ∈ X should be the tangent space TxX.

(b) For U ∈ OR∞ the tangent bundle TU should be trivial with fibre Rdim(U).

(c) The set of smooth sections Γ(TX) on TX should, in a natural way, be a
C∞(X) module.

(d) Given a smooth map φ : X → Y , the fiberwise defined tangent map
Tφ : TX → TY should be smooth.

(e) Given any smooth vector field V ∈ Γ(TX) and a function f ∈ C∞(X) the
map

x→ V (x)(f)

should be smooth.

As we shall see, the constructed tangent bundle will fulfil all of these require-
ments, and this will imply that the tensor bundle fulfil the requirements listed
in the introduction.

77
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6.1 The tangent cone bundle
Consider the pre-bundle

CX :=
⋃
x∈X

CxX.

We shall equip this pre-bundle with a bundle diffeology.

Definition 6.1.1 A parametrization γ : U → CxX is said to be a homogeneous
plot if for each u0 ∈ U there exist an open neighbourhood U0 of u0 and a smooth
parametrization γ† : U0 → C∞(R, X) such that

γ(u) = d[γ†(u)] for all u ∈ U0.

Note that if γ : U → CX is a homogeneous plot then π ◦ γ(u) = γ†(u)(0).
We shall by DCX denote the collection of all homogeneous plots. Note that, as
a direct consequence of the definition, this collection is a diffeology on CX. In
fact it is a bundle diffeology, as we shall see.

Remark 6.1.2 A remark on notation, if γ is a homogeneous plot we shall by γ†, in the
following, always mean the to γ associated map, as defined in definition 6.1.1.

Example 39 (The zero section)
Let X be a diffeological space. Denote by 0x the zero element in CxX ⊆ CX.
Given any plot α : U → X for DX define a map 0α : U → CX by

0α(u) := 0α(u).

We claim that this map is a homogeneous plot. To see this consider the smooth
map γ†U → (R, X) defined by

γ†(u)(ξ) := α(u),

that is γ†(u) is the constant plot onto α(u). Clearly d[γ†(u)] = 0α(u) = 0α(u),
i.e. 0α is a homogeneous plot.

Furthermore the map 0 : X → CX defined by 0(x) := 0x is a smooth section
of CX. To see this simply note that, for any plot α : U → X the conposition
u → 0(α(u)) = 0α(u) is, as we saw above, a homogeneous plot. We shall call
this section the zero section.

Lemma 6.1.3 The collection of homogeneous plots is a bundle diffeology on
the pre-bundle CX. And the fiber over x ∈ X is the tangent cone space at x.

Proof: In order to show that CX
π- X is a diffeological bundle, with fibers

the tangent cone spaces, we must show (1) that π is a subduction and (2) that
the subspace diffeology for CxX, as a subspace of CX, is the tangent cone space
diffeology.

(1) Let γ : U → TX be a homogeneous plot. Then π ◦ γ = γ†(u)(0) is clearly
smooth. It follows that π : CX → X is smooth, hence by lemma 1.3.6
−→π (DCX) ⊆ DX . For the other inclusion let α : U → X be a plot for
DX , and consider the homogeneous plot 0α : U → CX as describe above
in example 39. As π ◦ 0α = α it follows, by definition 1.3.4, that DX ⊆
〈π ◦ DCX〉 = −→π (DCX). Since π is also surjective it is a subduction.
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(2) Let x ∈ X and consider the subspace CxX of CX. Note the following
direct consequence of the definitions;

· a plot for the tangent cone diffeology is a homogeneous plot,

· a homogeneous plot with its image contained in CxX, is simply a
plot for the tangent cone diffeology at x.

It follows that the diffeology of the fiber is the tangent cone diffeology.

Lemma 6.1.4 Let γ : U → TX be a generating plot, then for any smooth map
φ : V → C∞(X) the map γ · φ is smooth.

Proof: Note that the map (u, ξ)→ γ†(u)(ξ) is smooth, hence the map (u, v, ξ)→
[φ(v) ◦ γ†(u)](ξ) is smooth. This implies that

γ · φ(u, v) = γ(u)[φ(v)] = d[γ†(u)](φ(v)) =
∂ [φ(v) ◦ γ†(u)](ξ)

∂ξ

∣∣∣∣
(u,v,ξ=0)

is smooth.

6.2 The Tangent bundle
Consider the pre-bundle

TX :=
⋃
x∈X

TxX,

as usual the base point projection is the map π : TX → X defined by sending
TxX ⊆ TX to x ∈ X.We shall equip this pre-bundle with a bundle diffeology,
thereby making it into our tangent bundle.

Definition 6.2.1 (Tangent bundle) The tangent bundle diffeology DTX on
TX is the weak vector bundle diffeology generated by the homogeneous plots,
that is

DTX :=
∑
〈DCX〉TX .

The tangent bundle is the diffeological bundle (TX,DTX).

Evidently DTX is a bundle diffeology on TX. We shall see below (proposi-
tion 6.2.2) that the fibers of the tangent bundle are in fact the tangent spaces.

Proposition 6.2.2 Let X be a diffeological space.

(i) A generating plot for DTxX is of the form

u→
n∑
i

λi(u)d[γ†i (u)] (6.1)

where n ∈ N, λi : U → R smooth and γ†i : U → C∞(R, X) smooth with
γ†1(u)(0) = · · · = γ†n(u)(0) for all u ∈ U . Furthermore the collections of
generating plots is a smooth covering.
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(ii) Let E → B be any diffeological vector bundle. Then A fiberwise linear
bundle map (A, a) : TX → E is smooth if and only if

u→ A(d[γ†(u)]) and a : X → B

are smooth, for all plots γ† : U → C∞(R, X).

(iii) DTX is the weakest regular vector space diffeology on TX such that the
maps u→ d[γ†(u)] are smooth.

(iiii) The fiber over x ∈ X of TX is the tangent space TxX.

Proof: (i) The collection of parametrization of the form given in eq. (6.1)
is clearly a subcollection of DTX and a smooth covering. Hence if we
can show that DTX locally belongs to this collection, it follows that it
generates DTX . Let γ : U → DTX be a plot, by restricting the domain,
we may assume that

γ(u) =
n∑
i=1

λi(u)γi(u)

where n ∈ N, λi : U → R smooth and γi : U → TX plots for 〈DCX〉TX
with π ◦ γ1 = · · · = π ◦ γn. Let u0 ∈ U then (since DCX is a smooth
collection and by theorem 1.2.4) there exist a neighbourhood Ui ⊆ U of
u0 such that γi|Ui is constant, or there exist a plot γ†i : Ui → C∞(R, X)
with γ†i (u)(0) = π ◦ γ(u) and such that

γi|Ui
(u) = d[γ†i (u)].

If γi|Ui is constant then

γi|Ui
=

k∑
j=1

λjd[αj ]

with λj ∈ R and αj ∈ Pπ◦γ(u0)(X). Now U ′ = ∩ni=1Ui is a non empty
neighbourhood of u0, by the above arguments we conclude that γ|U ′(u)
equals a linear expansion of the form eq. (6.1).

(ii) Having in mind lemma 1.2.6 and example 19 this is a obvious consequence
of (i).

(iii) By theorem 5.1.6 DTX is the weakest regular vector bundle diffeology
containing 〈DCX〉. As plots of the for u → d[γ†(u)] generates DCX and
therefor also 〈DCX〉 it follows that DTX is the weakest regular vector
bundle diffeology containing these plots.

(iiii) Let γ : U → TX be a plot and assume that Im(γ) ⊆ TxX. Using (i) we
may then, by restricting the domain, assume that

u→
n∑
i

λi(u)d[γ†i (u)]

where n ∈ N, λi : U → R smooth and γ†i : U → C∞(R, X) smooth with
γ†i (u)(0) = x for all u ∈ U . It follows by locality of DTxX that γ ∈ DTxX .
The other inclusion is trivial.
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Example 40 (The tangent bundle of euclidian spaces)
Let U ⊆ Rn be open then TU is trivial. Let u ∈ U and consider a tangent
vector dα ∈ TuU (i.e α ∈ Pu(Rn)) then we have the equality (see example 26)

dα =
n∑
i=1

dαi
dξ

∣∣∣∣
0

dτi(u),

where αi = pri ◦ α. We claim that the map Ψ : TU → U × Rn given by

Ψ(dα) :=
(
u,
dα1

dξ

∣∣∣∣
0

, . . . ,
dαn
dξ

∣∣∣∣
0

)
is a vector bundle isomorphism. Given that it is a diffeomorphism, it is not hard
to see that it is a isomorphism of vector bundles. Hence the task is to show that
Ψ is a diffeomorphism. It is clearly a bijection, let γ† : V → C∞(R,Rn) be a
plot, and let γ(v) := dγ†(v) then

v → Ψ(γ(v)) =

(
γ†(v)(0),

dγ†1(v)
dξ

∣∣∣∣∣
0

, . . . ,
dγ†n(v)
dξ

∣∣∣∣
0

)
which is seen to be smooth, as

v → dγ†i (v)
dξ

∣∣∣∣∣
0

=
∂γ†i · idR(v, ξ)

∂ξ

∣∣∣∣∣
ξ=0

is smooth. Hence Ψ is smooth.
Now let α : V → U×Rn be smooth, let us write α(v) = (α0(v), α1(v), . . . , αn(v))

with α0 : V → U and αi : V → R for i = 1, . . . , n. Then define a map
γ† : V → C∞(R,Rn) by

γ†(v)(ξ) := (α0(v), α1(v)ξ, . . . , αn(v)ξ) .

Clearly γ† is a plot, as it is smooth considered as a map V ×R→ Rn, furthermore
Ψ(dγ†) = α. This implies, by lemma 1.5.2, that Ψ is a diffeomorphism.

Vector fields

Smooth sections on TX, i.e elements of Γ(TX), are called (smooth) vector fields.
By lemma 5.1.4 it follows that Γ(TX) is C∞(X) module.

Example 41
Consider the subspace cone. Note that the map γ† : R2 → C∞(R,Λ) given by

γ†(θ, ξ)(t) = (cos(θ)(ξ − t), sin(θ)(ξ − t), ξ − t)

is a smooth, as it is smooth as a map R3 → Λ. If we use cylindrical coordinates
(θ, ξ) to denote points on the cone, then γ†(θ, z)(0) = (θ, z) ∈ Λ. Hence we may
define a vector field by setting V (θ, z) := d[γ†(θ, z)] (see fig. 6.1).
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Figure 6.1: The vector field V , see example 41.

The Tangent map

Definition 6.2.3 Let ϕ : X → Y be smooth. The tangent map Tϕ : TX →
TY is the map defined by the rule

Tϕ(v) := Tπ(v)ϕ(v).

Lemma 6.2.4 Let ϕ : X → Y be smooth. Then the tangnet map Tϕ is smooth.

Proof: Let γ : U → TX be a homogeneous plot. Then

Tϕ(γ(u)) = Tπ◦γ(u)ϕ(γ(u))

= Tπ◦γ(u)ϕ(d[γ†(u)])

= d[ϕ ◦ γ†(u)].

Hence u→ Tϕ(γ(u)) is a homogeneous plot for TY , as ϕ◦γ† ∈ C∞(U,C∞(R, Y ))
is smooth. Proposition 6.2.2 (ii) then implies smoothness of Tϕ

Remark 6.2.5 Note that the tangent map is a vector bundle morphism.

6.3 Differential forms
Tensor fields

Definition 6.3.1 (Tensor bundle) Let X be a diffeological space. For any
k ∈ N let

T k(X) :=

TX ⊗ · · · ⊗ TX︸ ︷︷ ︸
k copies

∗

i.e. the dual bundle of the tensor product bundle TX ⊗ · · · ⊗TX. Furthermore
it will be convenient to make the convention that T 0(X) := RX (i.e. the trivial
bundle over X with fiber R).

Note that the fibers of the tensor bundle may be consider as multilinear
maps. To be precise the fiber over x ∈ X is

L∞(TxX ⊗ · · · ⊗ TxX,R) ' L∞Mult(TxX × · · · × TxX,R).
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See also section 5.4. It is also worth noticing that theorem 5.4.1 implies that,
given a plot γ : U → T k(X) and k smooth vector fields on X, say V1, . . . , Vk,
the map

u→ γ(u)[V1(π ◦ γ(u)), . . . , Vk(π ◦ γ(u))]

is smooth. Smooth sections of T k(X) are called k-tensor fields on X. Consider
a k-tensor field T on X, and k smooth vector fields V1, . . . , Vk on X. By what
we just noted above, it follows that the map

X 3 x→ T (x)[V1(x), . . . , Vk(x)]

is smooth.

Example 42
Let U ⊆ Rn be open, then as shown in example 40 TU ' Rn × U . Now

T k(U) ' (U × Rn ⊗ · · · ⊗ Rn)∗ by theorem 5.2.3
' U × L∞(Rn ⊗ · · · ⊗ Rn,R) by theorem 5.3.5
' U × L∞Mult(Rn,R) by theorem 2.3.5

hence a smooth section of T k(U) is a smooth map U → L∞Mult(Rn,R). By using
the cartesian closer property of the functional diffeology, we conclude that the
set of tensor fields on T k(U) consists of all smooth functions

φ : U × Rn × · · · × Rn︸ ︷︷ ︸
k copies

→ R

with φ(u) multilinear for each u ∈ U .

The pullback of tensor fields

Lemma 6.3.2 Let ϕ : X → Y be a smooth map and let T be any k-tensor field
on Y , then the map ϕ∗(T ) : X → T k(X) defined as

ϕ∗(T )(x)[σ1, . . . , σk] := T (ϕ(x))(Txϕ(σ1), . . . , Txϕ(σk))

is a k-tensor field on X.

Proof: By linearity and smoothness of the tangent maps Txϕ it follows that
ϕ∗(T ) defines a section of the bundle T k(X). We still need to show that ϕ∗(T )
is smooth, so let α : U → X be a plot for X, and let γ(u) := ϕ∗(T )(α(u)). We
claim that γ is a plot for T k(X). To see this, consider k plots βi : V → TX
with π ◦βi = · · · = π ◦βk and a smooth map c : W → U×V with Im(c) ⊆ ∆γ,β1

then

γ(c1(w))[β1(c2(w)), . . . , βk(c2(w))]
= T (ϕ ◦ α(c1(w)))[Tϕ(β1(c2(w)), . . . , Tϕ(β1(c2(w))].

By lemma 6.2.4 w → Tϕ(β1(c2(w)) is smooth, and obviously w → ϕ◦α(c1(w) is
smooth. This implies (by theorem 5.4.1) that w → γ(c1(w))[β1(c2(w)), . . . , βk(c2(w))]
is smooth. Hence (i) and (ii) of theorem 5.4.1 holds, it follows that γ is a plot
for T k(X).
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Definition 6.3.3 The map ϕ∗ : Γ(T k(Y ))→ Γ(T k(X)), as defined in lemma 6.3.2,
is called the pullback along ϕ.

Note that if ϕ : U → V , with U, V ∈ OR∞, is smooth then the pullback of
ϕ is the usual one.

Lemma 6.3.4 Let φ : X → Y and ψ : Y → Z be smooth maps. Then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

Proof: A straightforward calculation will show this.

Differential forms

Definition 6.3.5 Let X be a diffeological space. For any k ∈ N define the
pre-bundle

Λk(X) :=
⋃
x∈X
L∞Alt(TxX × · · · × TXX︸ ︷︷ ︸

k copies

,R).

We equip Λk(X) with a bundle diffeology, namely the subspace diffeology
Λk(X) ⊆ T k(X). This is indeed a bundle diffeology, as π is easily seen to be
a subduction. Furthermore it is clear that the fiber over x ∈ X of Λk(X) is
simply L∞Alt(TxX × · · · × TXX,R). Note also that we use the convention that
Λ0(X) := RX . A diffeological k-form is a smooth section of the bundle Λk(X).
Note that the pullback along a smooth map takes a k-form to a k-form.

Example 43
By examples 42 and 35 (and section 4.1.2) we see that for U ⊆ Rn open,

Γ(Λk(U)) = C∞(U,L∞Alt(Rn × · · · × Rn,R)).

In other words the set of k-forms on U consists of all smooth functions

φ : U × Rn × · · · × Rn︸ ︷︷ ︸
k copies

→ R

with φ(u) multilinear and alternating for each u ∈ U .

Differential forms and D-forms

D-forms are defined as follows;

Definition 6.3.6 (D-form) A k-D-form ω̃ on a diffeological space X is a map-
ping of the form

DX →
⋃

U∈OR∞
C∞(U,L∞Alt(Rn × · · · × Rn︸ ︷︷ ︸

k copies

,R)), (6.2)

where n := dimU . Furthermore ω must fulfill the following

(i) For any n-plot α

ω̃(α) ∈ C∞(Dom(α),L∞Alt(Rn × · · · × Rn,R))
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(ii) For any smooth h : U → Dom(α)

ω̃(α ◦ h) = h∗(ω̃(α))

Let ω be differential k-form on a diffeological space X, i.e. a smooth section
of Λk(X). Then define a mapping of the form given in eq. (6.2) by

α→ α∗(ω).

Evidently this defines a D-form. In fact we see that given any tensor bundle
fulfilling requirement (b) and (c) from the introduction this will define a D-form.

We shall end this thesis with an open question, for which it would be nice
to have an answer, or a partial answer.

Open question Let X be a diffeological space. And consider the mapping

Γ(Λk(X))→ D-forms

as defined above. For which spaces X is this mapping subjective respectively
injective?
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Index

〈·〉, see diffeology, generated
γ · α, 24
loc
∈ , see parametrization, locally belongs to
loc
⊆ , 10
k-form, 84

base point projection, 79
base space, 57
bundle, 57

base space, 57
dual bundle, 71
fiber, 58
morphism, 57
product bundle, 62
smooth section, 58
subbundle, 59
tensor product bundle, 69
total space, 57
trivial, 58
vector bundle, 65

bundle diffeology, 60
bundle morphism, see bundle, morphism
bundle projection, 57

C∞, see smooth maps
category

Dif, 13
C∞(X,R), functional diffeology

diffeological vector space, 39
co-cover, 17

collection of maps, 18
cone, 43
constant parametrization, see parametrization,

constant
coproduct diffeology, 21
coproducts, 21
cover, 17

collection of maps, 18
covering, see diffeology, axioms, covering
curve, 42
curves centered at x, 42

D(X), lattice of diffeologies on X, 15
supremum and infimum, 15

DX , see diffeology
D◦X , see diffeology, discrete
Dweak, see the cross, weak diffeology
D•X , see diffeology, indiscrete
Dline, see the cross, line diffeology
DX -smooth, see smooth maps

Dsub, see the cross, subspace diffeology
D-topology, 23
diagram, 19
diffeological

diffeomorphism, 22
diffeological dual vector space, 36
diffeological vector space, 33

Rn, see Rn

C∞(X,R), see C∞(X,R)
diffeology, 11

axioms, 9
covering, 10
locality, 11, 14
smoothness, 10

comparison of, weaker, stronger, 11
discrete, 11, 15
D-topology, 23

generated, 14
D-topology, 23
plots, 14
smooth maps from, 15

indiscrete, 11, 15
limit, colimit, 19
plots, 11
quotient, 17
subspace, 17
D-topology, 23

diffeomorphism, 22
differentiable spaces, 3
dual bundle, see bundle, dual bundle
dual bundle diffeology, 71
dual tangent space, 49

embedding, 23
evaluation map, 24

fiberwise defined map, 61
functional diffeology, 25

G(·), see parametrization, composable with
Γ(E), smooth sections of a bundle, 58
generated diffeology, see diffeology, generated
generating family, 14
generating map, 15
genrating family, see diffeology, generated

Hn, see half spaces
half spaces, canonical diffeology, 32

smooth function on, 32
homogeneous plot, 78
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induction, 16, 22

k-tensor fields, 83

L∞(E,F ), smooth linear maps, 34
local collection, see diffeology, axioms, local-

ity
local diffeomorphism, 22
locally constant, 10

OR∞, open sets of euclidean spaces, 9

P(X), collections of parametrizations of X,
15

Par(X), parametrizations of X, 10
parametrization, 10

composable with, 10
constant, 10
locally belongs to, 10
locally constant, 10

Pnx(X), n paths centered at x, 42
plot derivation, 42
plots, see diffeology, plots
pre-bundle, 60
pre-induction, 16
pre-subduction, 16
product bundle, see bundle, product
product bundle diffeology, 62
product diffeology, 19
product parametrization, 20
pullback

forms, 83
pullback, diffeologies, 16
pushforward, 16

quotient cone diffeology, 31

Rn, canonical diffeology, 11
D-topology, 23

regular diffeological space, 52
Rn, canonical diffeology

diffeological vector space, 33
tangent bundle, 81
tangent spaces, 48

smooth collection, see diffeology,axioms, smooth-
ness

smooth maps, 12
strong diffeology, 18
subduction, 16, 22
subspace diffeology, see diffeology, subspace

tangent bundle, 79
tangent bundle diffeology, 79
tangent map, 51
tensor product bundle, see bundle, tensor prod-

uct
tensor product diffeology, 37
the cross, 12

line diffeology, 12, 21, 27
other diffeologies on, 27
relations among diffeologies on, 27

subspace diffeology, 12, 27
weak diffeology, 27

the generating map, 15
The Star, 49
The tangent space diffeology, 47
theorem

H. Whitney, 32
total space, 57
trivial bundle, see bundle, trivial
trivialization, see bundle, trivial

vector bundle, see bundle, vector bundle
regular, 66

vector bundle morphism, 65
vector fields, 81
vector pre-bundle, 65
vector space

diffeological, see diffeological vector space
vector space diffeology, 33

weak diffeology, 14, 18
weak vector bundle diffeology, 68
weak vector space diffeology, 34, 35

X , see the cross

zero section, 78
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