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The Skyrme Faddeev- Model

The Skyrme Faddeev- Model
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The Skyrme Faddeev- Model

The Hopf Charge and Hopfions
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The Skyrme Faddeev- Model
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The Skyrme Faddeev- Model

Level sets n3 = 0.9 and n3 = �0.9 for maps with N [n] = 1 (left) and
N [n] = 3 (right)
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The Skyrme Faddeev- Model

The energy bound

E [n] � c
r
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2
|N [n]|3/4 , c ⇡ (3/16)3/8

A. F. Vakulenko, L. V. Kapitansky, Sov. Phys. Dokl. 24 (1979); 433 A. Kundu, Y. P. Rybakov,

J. Phys. A 15 (1982), 269; J. Gladikowski, M. Hellmund, Phys. Rev. D 56, 5194 (1997)

R. S. Ward, Nonlinearity 12 (1999), 241 c = 1 (conjecture)
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The Skyrme Faddeev- Model

Figure 1: The position (light tube) and linking (dark tube) curves for the known lowest
energy solitons with Hopf charges 1  Q  7.

number of that component, due to its linking with the others. Hence the total charge is the
sum of the subscripts plus superscripts. The charge six soliton is similar to that of charge
five, but now both components of the link have charge two [1], so using the above notation
it is written as L1,1

2,2.
Finally, the charge seven soliton is the first (and so far only) example of a knot [1]. The

position curve is a trefoil knot, which has a self-linking or crossing number of three (the
crossing number of a knot is not an invariant and its use in this paper refers to the minimal
crossing number over all presentations). An examination of the linking curve in Figure 1
confirms that it twists around the position curve four times as the knot is traversed, so the
Hopf charge is indeed seven, being the sum of the crossing number plus the number of twists.
Any field configuration of a trefoil knot will be denoted by K3,2, which refers to the fact that
the trefoil knot is also the (3, 2)-torus knot (see the following section for more information
regarding torus knots). Note that this notation does not display the Hopf charge of the
configuration, which is determined by the twist number as well as the crossing number, but
this should not cause any confusion in what follows. Of course, for knots and links, as well
as for unknot configurations, the precise conformation of the position curve is important in
determining the energy, not just its topological type, but its knotted or linked structure is
an important feature in classifying the solution. Thus, for example, the Q = 7 trefoil knot
displayed in Figure 1 is not as symmetric as its typical knot theory presentation, and it is
significant that the energy is lowered by breaking the possible cyclic C3 symmetry.

Having reviewed the known results for low charge solitons and introduced the notation
used to label their structural type, it is time to turn to the main questions addressed in
this paper. Given the variety of solutions which appear, even at low charges, it is di�cult
to make a confident prediction of the kind of behaviour that might arise at higher charges.

6

(Sutcliffe ’07)
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The Skyrme Faddeev- Model

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

E/
Q

3/
4

Q

Figure 3: The ratio of the energy to the conjectured bound, that is, E/Q3/4, as a function of
Hopf charge Q for a variety of solutions: unknots and links (white circles); K3,2 (triangles);
K5,2 (diamonds); K4,3 (squares); K5,3 (stars); links which are not resolved (black circles).

The present study has produced 26 new solutions with 8  Q  16. The position curves
for each of these is displayed in Figure 4, but for clarity the linking curves are not shown,
although they have been examined to confirm the correct linking number identifications.
Each plot is labeled by its charge and type, with energies increasing first from left to right
and then top to bottom.

First of all, consider trefoil knots, that is, solutions which have the form K3,2. As men-
tioned earlier, the Q = 7 minimal energy soliton has this form and is obtained from the
related rational map initial condition. This is encoded in Table 1 as the process K3,2 ! K3,2.
The entry to the right of this one in Table 1 reveals that the same trefoil knot solution is
also obtained from the linked initial condition L1,1

2,3.
There are no trefoil knots with Q < 7. Evidence supporting this is presented in Table

1 for Q = 5 and Q = 6, where it is seen that in both cases initial conditions of the form
K3,2 result in the linked minimal energy solutions, which are L1,1

1,2 and L1,1
2,2 respectively. A

reasonable interpretation of these results is that for Q < 7 the number of twists T = Q � 3
is too low, given the preferred length of the soliton in a trefoil knot arrangement. In other
words, the twist per unit length is too low to be an energetically e�cient distribution of the
Hopf charge between crossing and twisting. A more detailed discussion of this aspect will
be given later, when general torus knots will be considered. Note that, in particular, there
is no trefoil knot solution in which there is no twist, which corresponds to Q = 3, and was
the original suggestion for a knot soliton [5].

13

Ratio E [n] / (N [n])
3
4 as function of N: unknots and links (circles), knots

(other signs) (Sutcliffe ’07)
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The Skyrme Faddeev- Model
78 Results

(a) Initial state of the knot Hopfion (b) Final state of the knot Hopfion

(c) Initial state of the vortex Hopfion (d) Final state of the vortex Hopfion

Figure 6.2: Comparison of knot and vortex Hopfions of H = 7.

invariant, E > 130.72 + 75.312 |H|, instead of the E ⇠ H3/4 of the closed
Hopfions studied earlier. The form of the energy bound for these systems
is still an open question [87].

6.1.3 Fully periodic domain, T3

The altered boundary conditions were taken a step further in [34]. The
boundaries are periodic for all dimensions:

�
�
x
�

= �
�
x + Lêj

� 8 j 2 {1, 2, 3}. (6.3)

Relaxation of a N=7 distribution (Jäykkä ’09)
L. D. Faddeev e A. J. Niemi, Nature 387 (1997), 58
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The Physical Motivations

In Matter Physics

1 3He � A superfluid (ML = 1, MS = 0)
2 2-band superconductor (Nb-doped SrTiO3, MgB2 )
3 charged condensates of tightly bounded fermion pairs
4 Dzyaloshinskii Moriya interaction Magnets S1 · S2 ⇥ S3
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The Physical Motivations

The 2comp - Ginzburg - Landau Model
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The Equations of Motion

The Equations of Motion (static limit)
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O (3) � nonlinear � model + new terms

Phases
Skyrme-Faddeev model n 6= const c = 0, ⇢ = const
1c-GL model in e.m. n = const, c 6= 0, ⇢ 6= const
Inhomogeneous Supercond. n 6= const, c 6= 0, ⇢ = const
quasi 1-D distributions (stripes) n 6= const, c = 0, ⇢ ⇡ ⇢ (f (r))

Martina (UniSalento) Symmetry reductions of the Skyrme-Faddeev model
Geometry of PDEs and Integrability 13

/ 46



The Equations of Motion

Stability of the order parameter configurations
Knotted and/or linked quasi-1-dimensional configurations
Coexistence/Competition of short/long (UV/IR) wave modes
Properties of knots and tangles
Topological ordering in disordered background

2

This general recipe can be used to construct various
models, depending on the lattice and node assignments.
Here we are interested in models with transitions between
localized and extended phases, and in the universal be-
haviour at the transition and in the extended phase. Our
simulations use Cardy’s ‘3D L-lattice’ [11], which has cu-
bic symmetry, and a variant, the ‘3D K-lattice’, which
di�ers in its link orientations and phase diagram (Fig. 2).

Lattice magnet. We rewrite Zloops in terms of lo-
cal ‘magnetic’ degrees of freedom which can be coarse-
grained in a fairly straightforward way. In this we are
inspired by the well-known O(n) loop models [20] – here
we obtain instead a lattice CPn�1 model.

Introduce complex unit vectors zl = (z1
l , ..., zn

l ) on the
links l of the lattice, and denote the integral over these
degrees of freedom by Tr (normalized so Tr 1 = 1). Now
consider a Boltzmann weight which is a product of terms,
one for each node of the lattice. Labelling the incoming
and outgoing links at a given node as in Fig. 1,

Z = Tr
�

nodes

⇣
p(z†

ozi)(z
†
o�zi�) + (1 � p)(z†

ozi�)(z†
o�zi)

⌘
.

(2)
This partition function reproduces the sum over loops
with the right weights. To see this, note that the terms
in the expansion of the product over nodes are in corre-
spondence with loop configurations C:

Z = Tr
X

C
pNp(1 � p)N1�p

�

L�C
tr

�

l�L
(zlz

†
l ). (3)

Here L is a loop, the outer product zlz
†
l is an n⇥n matrix,

and ‘tr’ is a trace in this space (the ordering of the last
product is given by the sequence of links on L). Now,
since Tr zlz

†
l = /n, we are left with one n ⇥ n trace, i.e.

one ‘colour’ index to sum, per loop. Let Nl be the total
number of links on the lattice. Then

Z =
1

nNl

X

C

X

loop colours

pNp(1�p)N1�p =
1

nNl
Zloops. (4)

The Boltzmann weight (2) defines a classical magnet for
the ‘spins’ z. In addition to the unitary global symmetry,
it has the local U(1) symmetry zl ! ei�lzl, so our spins
live not on the sphere |z|2 = 1 but on complex projective
space, CPn�1. This space degenerates to a point when
n = 1, leaving no degrees of freedom. Thus we must
either resort to a replica-like limit n ! 1, or generalize
(2) to a supersymmetric theory by replacing z with a

FIG. 1. Pairings at a node (with associated weights), and the
labelling of links used in (2).

FIG. 2. Loops on the 3D K-lattice at p = 0. At p = 1, they
become infinite straight trajectories (crossing at nodes).

unit supervector of n + k bosonic and k fermionic com-
ponents,  = (z1, ..., zn+k,�1, ...,�k). A nonzero number
k of fermions leaves the partition function and its loop
representation unchanged (using Tr  † = /n, the loop
expansion goes through as before, with tr ! str) but
yields more operators, and is necessary to give a nontriv-
ial theory when n = 1 (or n < 1).

Field theory. The naive continuum limit of (2) is the
CPn�1 model. In a sigma model formulation, with an
auxiliary gauge field A to remove the unwanted phase
degree of freedom, the Lagrangian density is:

L =
1

g2
|(@ � iA)z|2 , with |z|2 = 1 . (5)

The SUSY version, the CPn+k�1|k model, is got by z !
 . A crucial point in any formulation is that the gauge
field is compact : the set of gauge transformations z !
ei�z, A ! A + @� is larger than in noncompact U(1)
gauge theory as � can jump by 2⇡. This implies that
Dirac strings of flux 2⇡ incur no cost in action, and that
in integrating over A we must include Dirac monopole
configurations with quantized charge [21].

Work on deconfined criticality [22] has made clear that
compactness is a subtle issue, so it is useful to have an-
other route to the continuum limit for the loop models.
We use the transfer matrix to extract a (2+1)D quantum
SU(n) antiferromagnet [23, 25] as an intermediate step
– for an analogue in 2D, see [14, 15]. This procedure, to
be described in [24], clarifies the compactness of A.

Finally, an alternative to (5) is to use explicitly gauge-
invariant degrees of freedom. The two-colour case n = 2
reduces simply to the O(3) (classical Heisenberg) model
via Sµ = z†�µz, with � a Pauli matrix, and indeed the
loop models with n = 2 show the usual O(3) exponents
as described below. For general n (without fermions) we
can use the traceless matrix Q = zz† � 1/n.

Correlators. In 3D, the CPn�1 model has a transition
between a disordered phase and an ordered phase with
2(n � 1) Goldstone modes (or 2[n + k � 1] bosonic Gold-
stone modes and k complex fermions). Translating cor-
relators of gauge invariant operators into loop language

L. Martina , A. Protogenov, V. Verbus,Theor. Math. Phys. 160, n. (2009), 1058 - 1065; Theor. Math.

Phys. 167(3) (2011), 843-855
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The Equations of Motion

(several tens of nanometres) can be regarded as a magnetically 2D
system, in which the direction of q is confined within the plane
because the sample thickness is less than the helical wavelength;
therefore, various features should appear that are missing in bulk
samples. In the context of the skyrmion, the thin film has the advant-
age that the conical state is not stabilized when the magnetic field is
perpendicular to the plane23. Therefore, it is expected that the SkX can
be stabilized much more easily, and even at T 5 0, in a thin film of
helical magnet.

In this Letter, we report the real-space observation of the forma-
tion of the SkX in a thin film of B20-type Fe0.5Co0.5Si, the thickness of
which is less than the helical wavelength, using Lorentz TEM28 with a
high spatial resolution. The quantitative evaluation of the magnetic
components is achieved by combining the Lorentz TEM observation
with a magnetic transport-of-intensity equation (TIE) calculation
(Supplementary Information).

We first discuss the two prototypical topological spin textures
observed for the (001) thin film of Fe0.5Co0.5Si. The Monte Carlo
simulation (Supplementary Information) for the discretized version
of the Hamiltonian in equation (1) predicts that the proper screw
(Fig. 1a) changes to the 2D skyrmion lattice (Fig. 1b) when a perpen-
dicular external magnetic field is applied at low temperature and when
the thickness of the thin film is reduced to close to or less than the
helical wavelength. The Lorentz TEM observation of the zero-field
state below the magnetic transition temperature (,40 K) clearly
reveals the stripy pattern (Fig. 1d) of the lateral component of the
magnetization, with a period of 90 nm, as previously reported18; this
indicates the proper-screw spin propagating in the [100] or [010]
direction. When a magnetic field (50 mT) was applied normal to the
plate, a 2D skyrmion lattice like that predicted by the simulation
(Fig. 1b) was observed as a real-space image (Fig. 1e) by means of
Lorentz TEM. The hexagonal lattice is a periodic array of swirling spin
textures (a magnified view is shown in Fig. 1f) and the lattice spacing is
of the same order as the stripe period, ,90 nm. Each skyrmion has the
Dzyaloshinskii–Moriya interaction energy gain, and the regions
between them have the magnetic field energy gain. Therefore, the
closest-packed hexagonal lattice of the skyrmion has both energy
gains, and forms at a magnetic field strength intermediate between
two critical values, each of which is of order a2/J in units of energy. We

note that the anticlockwise rotating spins in each spin structure reflect
the sign of the Dzyaloshinskii–Moriya interaction of this helical mag-
net. Although Lorentz TEM cannot specify the direction of the mag-
netization normal to the plate, the spins in the background (where the
black colouring indicates zero lateral component) should point
upwards and the spins in the black cores of the ‘particles’ should point
downwards; this is inferred from comparison with the simulation of
the skyrmion and is also in accord with there being a larger upward
component along the direction of the magnetic field. The situation is
similar to the magnetic flux in a superconductor29, in which the spins
are parallel to the magnetic field in the core of each vortex.

Keeping this transformation between the two distinct spin textures
(helical and skyrmion) in mind, let us go into detail about their field
and temperature dependences. First, we consider the isothermal vari-
ation of the spin texture as the magnetic field applied normal to the
(001) film is increased in intensity. The magnetic domain configura-
tion at zero field is shown in Fig. 2a. In analogy to Bragg reflections
observed in neutron scattering22, two peaks were found in the cor-
responding fast Fourier transform (FFT) pattern (Fig. 2e), confirm-
ing that the helical axis is along the [100] direction. In the real-space
image, however, knife-edge dislocations (such as that marked by an
arrowhead in Fig. 2a) are often seen in the helical spin state, as
pointed out in ref. 18. When a weak external magnetic field, of
20 mT, was applied normal to the thin film, the hexagonally arranged
skyrmions (marked by a hexagon in Fig. 2b) started to appear as the
spin stripes began to fragment. The coexistence of the stripe domain
and skyrmions is also seen in the corresponding FFT pattern (Fig. 2f);
the two main peaks rotate slightly away from the [100] axis, and two
other broad peaks and a weak halo appear. With further increase of
the magnetic field to 50 mT (Fig. 2c), stripe domains were completely
replaced by hexagonally ordered skyrmions. Such a 2D skyrmion
lattice structure develops over the whole region of the (001) sample,
except for the areas containing magnetic defects (Supplementary
Information). A lattice dislocation was also observed in the SkX, as
indicated by a white arrowhead in Fig. 2c. The corresponding FFT
(Fig. 2g) shows the six peaks associated with the hexagonal SkX
structure. The SkX structure changes to a ferromagnetic structure
at a higher magnetic field, for example 80 mT (Fig. 2d, h), rendering
no magnetic contrast in the lateral component.

d e f

90 nm 90 nm 30 nm

[010] [100]

a b c

Figure 1 | Topological spin textures in the helical magnet Fe0.5Co0.5Si.
a, b, Helical (a) and skyrmion (b) structures predicted by Monte Carlo
simulation. c, Schematic of the spin configuration in a skyrmion. d–f, The
experimentally observed real-space images of the spin texture, represented
by the lateral magnetization distribution as obtained by TIE analysis of the

Lorentz TEM data: helical structure at zero magnetic field (d), the skyrmion
crystal (SkX) structure for a weak magnetic field (50 mT) applied normal to
the thin plate (e) and a magnified view of e (f). The colour map and white
arrows represent the magnetization direction at each point.

LETTERS NATURE | Vol 465 | 17 June 2010

902
Macmillan Publishers Limited. All rights reserved©2010

X. Z. Yu, Y. Onose, N. Nagaosa et al Nature 465 |17 (2010) 901

N. Romming et al., Science , 341 n. 6146 (2013) 636
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The SU (2) Yang-Mills theory

The Yang-Mills theory

mass gap , short range interactions
quark confinement , adrons as color singlets bound states

SU (2) - Yang-Mills - No Matter

S = �
Z

tr F ^ ?F ,

A = �iT aAa
µ (x) dxµ, T a 2 su (2) , F = dA + A ^ A

loc. g. inv. A ! V�1 A V + V�1 dV , V 2 SU (2)

Field eq.s d ? F + A ^ ?F � ?F ^ A = 0, dF + A ^ F � F ^ A = 0.
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Faddeev-Niemi effective Lagrangian

Faddeev-Niemi effective Lagrangian

L. D. Faddeev e A. J. Niemi, Nucl. Phys. B 776 (2007), 38
InfraRed limit + Quantum fluctuations : Spin-Charge Variables
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Faddeev-Niemi effective Lagrangian

Reductions
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3
8
�4 �1 � n2

3
�

+
1
16

h

n · DĈ
a n ⇥ DĈ

b n � 2n3

⇣

@aĈb � @bĈa
⌘i2

.

Higgs phenomena n ! ±ẑ , |x | ! 1

n 6= cost, ⇢ = � = cost e Ja = 0,

L =
�2

8
(@an)

2 +
1
16
�

n · @an ⇥ @bn � 4�2n3Hab
�2 �

3
8
�4n2

3
�

H4i = pi , Hjk = 2✏ijkqi
�

n = ẑ = cost, ⇢ 6= cost e Ja 6= 0,

L =
1
4
�

@aJb � @bJa � 2⇢2Hab
�2

+
1
2
(@a⇢)

2 +
1
2
⇢2J2

a �
3
8
⇢4 (1a)

n 6= cost, ⇢ = � = cost e Ja 6= 0 (Current States)

L =
1
4



(@aJb � @bJa) +
1
2
(n · @an ⇥ @bn)� 2�2n3Hab

�2
+

�2

2
J2
a +

�2

8
(@an)

2 �
3
8
�4n2

3.

(1b)

G. Martone, Thesis (Lecce, 2011)
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Stereographic form of the Skyrme-Faddeev model

Stereographic form of the Skyrme-Faddeev model

S2 $ C n =
⇣

w+w̄
ww̄+1 , � i(w�w̄)

ww̄+1 , 1�ww̄
ww̄+1

⌘
w = n1+ın2

1�n3

Lw =

P3
i=0 g i@iw @i w̄

8⇡2 (1 + ww̄)2
+ �

P3
i ,j=0,i<j g i g j (@iw @j w̄ � @jw @i w̄)2

16⇡2 (1 + ww̄)4
.

(gi ) = (�1, 1, 1, 1)
U = (w , w̄)T Ui = @iU, Ui ,j = @i@jU.

P
0ij3 Kij [U, U0, . . . , U3]Uij � K0 [U, U0, . . . , U3] = 0

Kij = g i
n

�ij
h

�

1 + 1
2U†U

�2
�1 + �

2 A
P

l (1 � �il ) glUl ⌦ Ul

i

� � (1 � �ij )Ag jUi ⌦ Uj

o

K0 =
n

�

1 + 1
2U†U

�

AB
P

0l3 glUl ⌦ Ul � 2�
1+ 1

2 U†U

P

0l<m3 glgm [ACUl ⌦ Um]
2
o

U
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Stereographic form of the Skyrme-Faddeev model

Lie-point Symmetry Group
�
E

4
o SO (3, 1)

� ⌦ SO (3)

ti = @i , ri ,j = x i@j � g ig jx j@i , (i , j = 0, · · · , 3)

w0 = �w@w + w̄@w̄ , w1 = @w + w̄2@w̄ , w�1 = w2@w + @w̄ ,

[w1,w�1] = 2w0, [w0,w±1] = ±w±1,

w̃ = e i⌘ a + i w
1 � i ā w

⌘ 2 R, a 2 C, n , Rn
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Stereographic form of the Skyrme-Faddeev model

, Lagrangian Symmetries

Pi i =
�2|@iw |2 +

P3
j=0 |@jw |2

8⇡2 (1 + ww̄)2
� �

P

j<k (�1)�i j+�i k
�

@jw @k w̄ � @kw @j w̄
�2

16⇡2 (1 + ww̄)4
,

Pi j = �
Re
�

@iw@j w̄
�

8⇡2 (1 + ww̄)2
+ �

P

k 6=i, j Im (@iw@k w̄) Im
�

@jw@k w̄
�

4⇡2 (1 + ww̄)4

J i j
k = xiPjk � xjPjk (i , j cyclic)

Qj =
Im (w̄@iw)

2⇡2 (1 + ww̄)2
� �

Im
⇣

w
⇣

@jw
P

k 6=j @k w̄2 � @j w̄
P

k 6=j |@kw |2
⌘⌘

4⇡2 (1 + ww̄)4
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Stereographic form of the Skyrme-Faddeev model

Symmetry Sub-Algebras Classification

so (3, 1) ]
⇣
Span {ti} � so (3)gauge

⌘

classify Sk ⇢ so (3) : norSk = {v 2 so (3) : advSk ✓ Sk} ;
identify Nk ⇢ Span {ti} � so (3)gauge : NorSk (Nk) ⇢ Nk ;
identify non-splitting sub-algebras : 6= Sk � Nk

1-dim : t0, r12, t3, r12 + ↵w0, ↵ 2 R;
1-dim non splitting : r12 ± t3;
2-dim s.a. : {t0, t3}, {t3, t1}, {t0, r12}, {t0, r12 ± t3} and
{t0, r12 + ↵w0} for any ↵ 2 R ;
3-dim : so (3)rot , {t0, t3, t1},

n

r12 + w0, r23 +
w1+w�1

2 , r31 +
w1�w�1

2i

o

1- and 2-dim space reductions E [n] = 1
Plane Waves w = w0 e ipjxj :

P
i g

jp2
j = 0

Monopole n  ± r̂
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Hedgehog Solutions

Hedgehog Solutions

v = ı (x@y � y@x)+↵ (w@w � w̄@w̄ ) ) w = eın' (cot[✓] + ı cot[� (r)] csc[✓])

n · � = U (n1 · �)U†

U = exp [i� (r)⌫ (#, ') · �] = cos� (r) I + i sin� (r)⌫ (#, ') · �

⌫ (#, ') = (sin (m#) cos (n') , sin (m#) sin (n') , cos (m#)) : S2 ! S

2 deg (⌫) = m n

E [�] =
1
3⇡

Z 1

0

⇢
r2�02 + 2 sin2 �

�
��02 + 1

�
+ �

sin4 �

r2

�
dr

�
r2 + 2� sin2 �

�
�00 + 2r�0 + sin 2�

✓
��02 � 1 � �

sin2 �

r2

◆
= 0

� (0) = ⇡ and � (1) = 0
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Hedgehog Solutions

Hedgehog Solutions

g (r) = sin
� (r)

2
(� = 1)

�
8g4 � 8g2 � r2� �

g2 � 1
�
g 00 + g

⇥
8g2 �

g2 � 2
�
+ r2 + 8

⇤
g 02

�2r
�
g2 � 1

�
g 0 � 2g

�
2g2 � 1

� �
g2 � 1

�2 �
4g4 � 4g2 � r2�

r2 = 0,

NO Painlevé property
Approximated solutions by rational f.

grat (r) =
1 + a1r + a2r2

1 + a1r + b2r2 + b3r3 + b4r4 ,

a1 = 0.216, a2 = 0.230, b2 = 0.752, b3 = �0.018, b4 = 0.302,
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Hedgehog Solutions

Hedgehog Profile

1 2 3 4 5 6 7
r

0.5

1.0

1.5

2.0

2.5

3.0

cHrL

Blu : numerical solution. Green: �rat = 2 arcsin grat . Red: test �p-function.
Orange: Atiyah - Manton test function |E [�num]�E [�rat |]

|E [�num]| ⇡ 10�3
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Hedgehog Solutions

Collisions of Vortices (Hietarinta et al ’11)
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Rational Maps Ansatz

Rational Maps Ansatz

(Manton) ! 2 K ⇢ SO (3)
R

3 ! S

2 ⇥ R

+ z ! !S (z) = ↵z+�
��̄z+↵̄ , |↵|2 + |�|2 = 1

w -space w ! !T (w) = �w+�
��̄w+�̄

, |�|2 + |�|2 = 1
symmetric map: w (!S (z)) = !T (w (z)) 8! 2 K
IRREP SO(3) subgroups (Platonic symm) , Klein Polynomials

RC = z , RD = z2, RT =
z3 � p

3ızp
3ız2 � 1

, RO =
z4 + 2

p
3ız2 + 1

z4 � 2
p

3ız2 + 1
,

RY =
z7 � z5 � 7z2 � 1
z7 + z5 � 7z2 + 1

F. Klein,Lectures on the Icosahedron,(London, Kegan Paul, 1913)
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Rational Maps Ansatz

Rational Maps Ansatz

⌫R = 1
1+|R|2

�
R + R̄ , �ı

�
R � R̄

�
, 1 � |R|2� UR = exp [i� (r)⌫R · �]

w (r , z , z̄) =
(1 � |R|2) + i(1 + |R |2) cot� (r)

2R̄
.

E [w , w̄ ] =

Z

(

|@iw |2

8⇡2(1 + |w |2)2
� �

�

@iw @j w̄ � @jw @i w̄
�2

32⇡2(1 + |w |2)4

)

2idzdz̄
(1 + |z|2)2

r2dr .

E [�] =
1
3⇡

Z 1

0

⇢
Ir2�02 + 2 sin2 �

�
�B1�

02 + B2
�
+ �J sin4 �

r2

�
dr ,

I = 3
2⇡

R |R|2
(1+|R|2)2

2idzdz̄
(1+|z|2)2 J = 3

4⇡
R ⇣

1+|z|2
1+|R|2

��dR
dz

��
⌘4 ⇣

1�|R|2
1+|R|2

⌘2 2idzdz̄
(1+|z|2)2

B1 = B2 = N
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Rational Maps Ansatz

Rational map R (z) Degree N Coefficient I Coefficient J

z 1 1 1

z2 2 0.644 3.956

z3�
p

3izp
3iz2�1

3 1 13.577

z4+2
p

3iz2+1
z4�2

p
3iz2+1

4 1.172 25.709

z7�7z5�7z2�1
z7+7z5�7z2+1 7 1 60.868
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Rational Maps Ansatz

RT = z3�
p

3ızp
3ız2�1
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Reductions of the Skyrme - Faddeev model

Polar form of the Skyrme - Faddeev model

Polar representation

� = (sin w cos u, sin w sin u, cos w) , (2)

Lp =
1

32⇡2

⇢
wµwµ + sin2 w


uµuµ � �

2
(wµwµu⌫u⌫ � wµw⌫uµu⌫)

��
,

(3)
Euler - Lagrange Equations

@µwµ = 1
2 sin(2w)u⌫u⌫ + �

2 sin w u⌫ @µ[sin w(wµu⌫ � w⌫uµ)],

wµuµ sin(2w) + sin2 w [@µuµ + �
2w⌫@µ(uµw⌫ � u⌫wµ)] = 0. (4)

Martina (UniSalento) Symmetry reductions of the Skyrme-Faddeev model
Geometry of PDEs and Integrability 31

/ 46



Reductions of the Skyrme - Faddeev model

The d’Alembert-homogeneous Eikonal reduction: w = const

@µuµ = 0, u⌫u⌫ = 0,

G (u, Aµ (u) xµ, Bµ (u) xµ) = 0, AµAµ = BµBµ = AµBµ = 0,

with G , Aµ and Bµ arbitrary real regular functions.

Cieciura G and Grundland A M 1984 J. Math. Phys. 2 3460-3469
Collins C B 1983 J. Math. Phys. 24 22
Fushchich V I, Zhdanov R Z and Revenko I V 1991 Ukr. Mat. Z. 43
1471-1487; Zhdanov R Z, Revenko I V and Fushchich V I 1995 J. Math.
Phys. 36 7109
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Reductions of the Skyrme - Faddeev model

Orthogonality reduction

By imposing

wµuµ = 0, u⌫u⌫ = ↵ (↵ = constant 2 R) .

the system reduces to the equations

@µuµ = 0, u⌫u⌫ = ↵,

wµuµ = 0, @µwµ =
↵

2
sin(2w)

1 � �↵
2 sin2 w

(1 +
�

2
wµwµ),

which are highly nonlinear for the w field.
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Reductions of the Skyrme - Faddeev model

General solution of the d’Alembert-Eikonal system

u = Aµ (⌧) xµ + R1 (⌧) ,

Bµ (⌧) xµ + R2 (⌧) = 0,
AµAµ = ↵, AµBµ = A0

µBµ = BµBµ = 0,

Then, for ↵ = �⌘2 , the general solution is

u = xkAk(⌧) + A0(⌧), t = xkBk(⌧) + B0(⌧),

A1 = ⌘ cos(f (⌧)) sin(g (⌧)), A2 = ⌘ sin(f (⌧)) sin(g (⌧)), A3 = ⌘ cos(g (⌧)),

being f (⌧) and g (⌧) arbitrary functions.
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Reductions of the Skyrme - Faddeev model

The reduced Skyrme–Faddeev system

By setting to zero the coefficients of all functions of w ) quasilinear
system in (uµ, wµ)

@µwµ = 0, wµwµ = �✏2, uµwµ = 0, (5)
d’Alembert-Eikonal

�
u ! w ,↵ ! �✏2� orthogonality condition

u⌫@µ(wµu⌫ � w⌫uµ) = 0, ✏2@µuµ + w⌫@µ(uµw⌫ � u⌫wµ) = 0,
m aµwµ = 0 with a = u⌫u⌫ identity

�
✏2 = 2

�

�
(6)

Compatibility condition for d’Alembert-Eikonal eq. : the Monge-Ampére

Det [wij ] = 0,
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Reductions of the Skyrme - Faddeev model

Compatibility condition for the u-orthogonality eq.s

(w2
s � ✏2)umukwkm + (ukwk)

2wmm = 2uswsumwkwkm,

4ukwkuswsp(wmwpm � wpwmm) + 2(uswmwsm)2 +

(usws)2(wmmwpp � w2
pm) = 2(w2

p � ✏2)(uswsm)2.

Search for

u
0

= A (wi , wij) u
1

, u
2

= B (wi , wij) u
1

, u
3

= C (wi , wij) u
1

,

(1+2)-dim ) u = F [w1, w2] , a ⌘ 0 8w
(1+3)-dim ) u = F [w1, w2, w3]

(xmB 0
m(⌧) + B 0

0(⌧))d⌧ = dt � Bk(⌧)dxk , Xk = xk ,

[Xm(B 0
m(⌧)Ap(⌧) � A0

m(⌧)Bp(⌧)) + B 0
0(⌧)Ap(⌧) � A0

0(⌧)Bp(⌧)]uXp = 0
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Quasi-Periodic Solutions

Phase - pseudo-phase Solutions

w = ⇥ [✓] , u = � [✓] + ✓̃, where ✓ = ↵µxµ, ✓̃ = �µxµ

A 3-parametric family of equations

2B3 � �

4
B sin2⇥

�
⇥✓✓ = sin 2⇥

✓
�

8
B ⇥2

✓ + B3�
2
✓ + B2�✓ + B1

◆

2B3 sin2⇥ �✓✓ +⇥✓ sin 2⇥ (2B3�✓ + B2) = 0,

where B1 = ��µ�µ, B2 = �2↵µ�µ B3 = �↵µ↵µ and B = B2
2 � 4B1B3.
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Quasi-Periodic Solutions

Conservation laws

E0 = B3↵0⇥
2
✓ + sin2⇥

⇥
2↵ · � �0 +

�
B1 � 2�2�↵0

+B3 (2�0 + ↵0�✓)�✓ � �B
8
↵0⇥

2
✓

�
,

E i = B3↵i⇥
2
✓ + sin2⇥


B2�i � B1↵i + B3 (2�i + ↵i�✓)�✓ � �B

8
↵i⇥

2
✓

�
.

B3 6= 0 and substitution

⇥ = arcsin
p
 ,

 2
✓ =

64( � 1) ( � A1) ( � A2)

�2B 1 ( 1 �  )
.
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Quasi-Periodic Solutions

0.2 0.4 0.6 0.8 1.0 1.2 1.4
y

0.5

1.0

1.5

†yq§-1

Figura: The graphic for the inverse square root of  ✓ for the family of parameters
B = 1, A

1

= .1, A
2

= .8 and �.45   
1

 1.55 with steps of 0.1. Only one
bounded periodic solutions exists for any set of parameters.
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Quasi-Periodic Solutions

Parametric form solutions

✓ ( ) = ✓0 +
1
4

s

B�2 1 ( 1 � A1)
2

(A1 � 1) (A2 �  1)
⇧



A1 � A2

 1 � A2
;Z |

( 1 � 1) (A1 � A2)

(A1 � 1) ( 1 � A2)

�

,

 = �
A2 1 sin2 Z + A1

�

 1 cos2 Z � A2
�

A1 sin2 Z + A2 cos2 Z +  1

� = �
B2U2

2B3



Z

d✓
 (✓)

+ ✓

�

+ �0 =

�
s1

2 1

"

s

2 1 (A1 �  1) 2 (B1� 1 + 2)
(A1 � 1) (A2 �  1)

⇧

✓

A2 � A1

A2 �  1
;Z
�

�

�

�

(A1 � A2) ( 1 � 1)
(A1 � 1) ( 1 � A2)

◆

+2s2

s

A2 1 (A1 �  1) 2

A1 (A1 � 1) (A2 �  1)
⇧

✓

(A1 � A2) 1

A1 ( 1 � A2)
;Z
�

�

�

�

(A1 � A2) ( 1 � 1)
(A1 � 1) ( 1 � A2)

◆

#

,
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Quasi-Periodic Solutions

( 
1

, A
2

) phase plane of the amplitudes of the periodc  function
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Quasi-Periodic Solutions

-20 -10 10 20

-1.0

-0.5

0.5

1.0

Figura: The graphic for the �
1

(green), �
2

(blue) and �
3

() as function of x3 for
a choice of the parameters
A

1

= 0.2, A
2

= 0.8, 
1

= 0.9, B = 1,� = 1, B
1

= 1, s
1

= �1, s
2

= �1 .
Accordingly, the wave vectors for the phase and pseudo-phase have been chosen
to be ↵µ = (0, 0, 0, 0.33541) and �µ = (1.49638, 1, 0, �1.49638), respectively
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Quasi-Periodic Solutions

-20 -10 10 20

-1.0

-0.5

0.5

1.0

Figura: The graphic for the �
1

(green), �
2

(blue) and �
3

() for a choice of the
parameters
A

1

= 0.2, A
2

= 0.99, 
1

= 20.01, B = 1,� = 1, B
1

= 1, s
1

= �1, s
2

= �1. The
wave vectors are ↵µ = (0, 0, 0, �1.58153) and �µ = (�1.04879, 1, 0, 1.04879),
respectively
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Quasi-Periodic Solutions

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figura: Projection on the plane (�
1

,�
2

) of a sample of about 5000 consecutive
values of the field � along the axes

�
0, 0, x3

�
, for the same choice of parameters

as in Figure 2
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Quasi-Periodic Solutions

Figura: A sample of 200 consecutive spin configurations along the x3 axis, with
parameters as in Figure 2.
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The Whitham averaging method

The Whitham averaging method

L̂p = sin2(⇥)

✓
�1

2
�

✓
B2

2
4

� B1B3

◆
⇥2
✓ + B3�

2
✓ + B2�✓ + B1

◆
+ B3⇥

2
✓,

Averaged constrained Lagrangian on a period

L ⌘
1
2⇡

I

L̂p d✓,
I

d✓ = 2⇡, < �✓ >=

I

�d✓ = 2⇡m,

L =

✓

B1 �
B2

2
4B3

◆

 

A1 + A2 + W
r

�

2
B3

!

+
B2 + 2mB3

2B3

q

A1A2(B2
2 � 4B1B3),

where

W =
1
2⇡

I

s

( � A1) ( � A2) ( �  1)

1 �  

d 
 

.
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The Whitham averaging method

LA1 = 0 and LA2 = 0
! = �✓X 0 , ki = ✓X i and � = �✓̃X 0 ,�i = ✓̃X i , where X 0, X 1, X 2, X 3 are the
so called “slow” variables in comparison with “fast” variables x0, x1, x2, x3

@0L! = @iLk i , @0L� = @iL�i , (7)

with the compatibility conditions

@0k1 + @i! = 0, , @jk i = @ik j i 6= j , (8)
@0�

i + @i� = 0, , @j�
i = @i�

j i 6= j .
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Conclusions

Conclusions and open problems

Skyrme-Faddeev model is relevant in Condensed Matter and pure
Yang-Mills theory in infrared limit
Localized perturbations are Knotted Vortices stabilized by the Hopf
index
Approximate solutions can be found in the axisymmetric setting
and/or in the rational map ansatz
Domain -wall solutions are described by the d’Alembert-Eikonal
system and its generalizations
Periodic Solutions exists in terms of elliptic functions (Indication of
integrable sub-sectors?)
Witham averaging method can be applied, but challenging
Higher symmetries (if any) are still unknown
Reduction/ modification to integrable systems is unknown (not even
in 2D)
Interaction among hopfions is under considerations by numericals and
by lattice toroidal moment models (Protogenov,Verbus)
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