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Let M be a 5–dimensional contact manifold. Let C be its contact distribution.

Let

M (1) = {Legendrian planes of M} LGr(2,4)−→ M

Remark:

Legendrian planes of M are Lagrangian planes of (C, dθ), with ker(θ) = C.

Locally

M = (x, y, u, ux, uy) , M (1) = (x, y, u, ux, uy, uxx, uxy = uyx, uyy)

or

M = (x1, x2, u, p1, p2) , M (1) = (x1, x2, u, p1, p2, p11, p12 = p21, p22)

A hypersurface of M (resp. of M (1)) is a first order (resp. second order) PDE.

f (x, y, u, ux, uy) = 0 , F (x, y, u, ux, uy, uxx, uxy, uyy) = 0
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From now we fix the point m ∈M , i.e. we work in a fibre.
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Hyperplane sections are Monge-Ampère equations:

a0 + a1uxx + a2uxy + a3uyy + a4(uxxuyy − u2xy) = 0

Plücker : (p11, p12, p22) ↪→ (1 , p11 , p12 , p22 , p11p22 − p212)



.

Now we see how to define Monge-Ampère equations by using characteristics

directions and how to characterize such PDEs in terms of some canonical con-

formal structures on Lagrangian Grassmannians
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ED def
= {m1 ∈M (1) | Lm1 ∩ Dπ(m1) 6= 0} = ED⊥

Locally

ED : det

(
uxx − f11 uxy − f12
uxy − f21 uyy − f22

)
= 0

ED is a parabolic una Monge–Ampère equation ⇐⇒ f12 = f21 ⇐⇒ D = D⊥.
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Let

g̃ = e2λg , λ ∈ C∞(LGr(2, 4))

Then

∇g̃
XY = ∇g

XY + β(X, Y )

for some β depending on g and λ.

• The condition

Hess(f )|f=0 ≈ g|f=0 (II ≈ I)

is independent of the choice of g in its conformal class.

• A straightforward computation shows that

II− H · I , H mean curvature

is a conformal invariant.

S ⊂ LGr(2, 4) is a hyperplane section ⇐⇒ II− H · I = 0
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Let pij be coordinates on LGr(3, 6).

Recall that

X =
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Xij∂pij is of rank 2 ⇐⇒ det(Xij) = 0

Equivalently

X =
∑
i≤j

Xij∂pij is of rank 2 ⇐⇒ T (X,X,X) = 0

where

T = det(dpij) is defined up to a conformal factor

So, we have a natural conformal 3-tensor on LGr(3, 6)
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Let us consider the symmetric 3-tensor T :

T = det(dpij) , i, j = 1, . . . , 3

XyT is a (pseudo) metric ⇐⇒ X is of maximal rank

Theorem Let X ∈ sym([T ]) be of maximal rank. Then the condition

IIXyT ≈ IXyT (0.1)

is independent of X .

Theorem If a hypersurface of LGr(3, 6) satisfy condition (0.1), then it is a

hyperplane section of LGr(3, 6), i.e. a Monge-Ampère equation.

IIXyT− ??? · IXyT = 0

Hyperquadric sections?


