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From now we fix the point m € M, i.e. we work in a fibre.
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Hyperplane sections are Monge-Ampere equations:

2
apg + AUy, + AUy + A3Uyy =+ a4<ul’xuyy — uxy) =0

Pliicker : (p11, p12,p22) <= (1, P11, P12, Doz, P11P22 — Dio)



Now we see how to define Monge-Ampere equations by using characteristics
directions and how to characterize such PDEs in terms of some canonical con-
formal structures on Lagrangian Grassmannians
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X

D’ﬂl

def

Ep = {mt e MY | L,iN D,y # 0} = Epu

Locally
8D:det(umx_f11 uwy_fm) —0

Ugy — f21 Uyy — f22

Ep is a parabolic una Monge-Ampere equation <= fi2 = fo1 <= D = D+.
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Levi-Civita connection up to a conformal changing of the metric
Let
Gg=¢e*g, XeCO®(LGr(2,4))

Then )
VLY =ViY + 8(X,Y)
for some 3 depending on g and A.

e The condition
Hess(f)|j=o = glf=0 (LI =1)

is independent of the choice of ¢ in its conformal class.

e A straightforward computation shows that

IIT—H-I, H mean curvature

1s a conformal invariant.

S C LGr(2,4) is a hyperplane section <= I[I—H-1=10




Rank 2 vectors of LGr(3,6) and its conformal structure

Let p;; be coordinates on LGr(3,6).



Rank 2 vectors of LGr(3,6) and its conformal structure

Let p;; be coordinates on LGr(3,6).
Recall that
X = ZXijapzj is of rank 2 <= det(X;;) =0

1<J



Rank 2 vectors of LGr(3,6) and its conformal structure

Let p;; be coordinates on LGr(3,6).
Recall that
X = ZXijapzj is of rank 2 <= det(X;;) =0

i<j
Equivalently

X =) X0, sofrank2 <= T(X, X, X)=0
i<j

where

T = det(dp;;) is defined up to a conformal factor



Rank 2 vectors of LGr(3,6) and its conformal structure

Let p;; be coordinates on LGr(3,6).
Recall that
X = ZXijapzj is of rank 2 <= det(X;;) =0

i<j
Equivalently

X =) X0, sofrank2 <= T(X, X, X)=0
i<j

where

T = det(dp;;) is defined up to a conformal factor

So, we have a natural conformal 3-tensor on LGr(3,6)




Hyperplane sections of LGr(3,6)

Let us consider the symmetric 3-tensor 1":

T:det(dpij), i,jzl,...,g

X T is a (pseudo) metric <= X is of maximal rank |




Hyperplane sections of LGr(3,6)

Let us consider the symmetric 3-tensor 1":

T:det(dpij), i,jzl,...,g

X T is a (pseudo) metric <= X is of maximal rank |

Theorem Let X € sym(|7]) be of maximal rank. Then the condition
47 ~ 157 (0.1)

is independent of X.



Hyperplane sections of LGr(3,6)

Let us consider the symmetric 3-tensor 1":

T:det(dpij), i,jzl,...,g

X T is a (pseudo) metric <= X is of maximal rank |

Theorem Let X € sym(|7]) be of maximal rank. Then the condition
47 ~ 157 (0.1)
is independent of X.

Theorem If a hypersurface of LGr(3,6) satisfy condition (0.1), then it is a
hyperplane section of LGr(3,6), i.e. a Monge-Ampere equation.



Hyperplane sections of LGr(3,6)

Let us consider the symmetric 3-tensor 1":

T:det(dpij), i,jzl,...,g

X T is a (pseudo) metric <= X is of maximal rank |

Theorem Let X € sym(|7]) be of maximal rank. Then the condition
47 ~ 157 (0.1)
is independent of X.

Theorem If a hypersurface of LGr(3,6) satisfy condition (0.1), then it is a
hyperplane section of LGr(3,6), i.e. a Monge-Ampere equation.

P pop o P



Hyperplane sections of LGr(3,6)

Let us consider the symmetric 3-tensor 1":

T:det(dpij), i,jzl,...,g

X T is a (pseudo) metric <= X is of maximal rank |

Theorem Let X € sym(|7]) be of maximal rank. Then the condition
47 ~ 157 (0.1)
is independent of X.

Theorem If a hypersurface of LGr(3,6) satisfy condition (0.1), then it is a
hyperplane section of LGr(3,6), i.e. a Monge-Ampere equation.

P pop o P

Hyperquadric sections?



