Conformal geometric aspects of hyperplane sections of Lagrangian Grassmannians

Gianni Manno

Politecnico di Torino
ongoing work with Jan Gutt and Giovanni Moreno
October 23, 2015

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution.

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution.
Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$.

$M^{(1)}$

$M^{(1)}$
\downarrow

$M^{(1)}$
\downarrow

$M^{(1)}$
\mid

$M^{(1)}$

$M^{(1)}$

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution.
Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$.

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution. Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$. Locally

$$
M=\left(x, y, u, u_{x}, u_{y}\right), \quad M^{(1)}=\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}=u_{y x}, u_{y y}\right)
$$

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution. Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$.
Locally

$$
M=\left(x, y, u, u_{x}, u_{y}\right), \quad M^{(1)}=\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}=u_{y x}, u_{y y}\right)
$$

or

$$
M=\left(x^{1}, x^{2}, u, p_{1}, p_{2}\right), \quad M^{(1)}=\left(x^{1}, x^{2}, u, p_{1}, p_{2}, p_{11}, p_{12}=p_{21}, p_{22}\right)
$$

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution. Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$.
Locally

$$
M=\left(x, y, u, u_{x}, u_{y}\right), \quad M^{(1)}=\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}=u_{y x}, u_{y y}\right)
$$

or

$$
M=\left(x^{1}, x^{2}, u, p_{1}, p_{2}\right), \quad M^{(1)}=\left(x^{1}, x^{2}, u, p_{1}, p_{2}, p_{11}, p_{12}=p_{21}, p_{22}\right)
$$

A hypersurface of M (resp. of $M^{(1)}$) is a first order (resp. second order) PDE.

Contact geometry of PDEs

Let M be a 5 -dimensional contact manifold. Let \mathcal{C} be its contact distribution. Let

$$
M^{(1)}=\{\text { Legendrian planes of } M\} \xrightarrow{\operatorname{LGr}(2,4)} M
$$

Remark:

Legendrian planes of M are Lagrangian planes of $(\mathcal{C}, d \theta)$, with $\operatorname{ker}(\theta)=\mathcal{C}$.
Locally

$$
M=\left(x, y, u, u_{x}, u_{y}\right), \quad M^{(1)}=\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}=u_{y x}, u_{y y}\right)
$$

or

$$
M=\left(x^{1}, x^{2}, u, p_{1}, p_{2}\right), \quad M^{(1)}=\left(x^{1}, x^{2}, u, p_{1}, p_{2}, p_{11}, p_{12}=p_{21}, p_{22}\right)
$$

A hypersurface of M (resp. of $M^{(1)}$) is a first order (resp. second order) PDE.

$$
f\left(x, y, u, u_{x}, u_{y}\right)=0, \quad F\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)=0
$$

Point of M

From now we fix the point $m \in M$, i.e. we work in a fibre.

Hyperplane sections are Monge-Ampère equations:

$$
a_{0}+a_{1} u_{x x}+a_{2} u_{x y}+a_{3} u_{y y}+a_{4}\left(u_{x x} u_{y y}-u_{x y}^{2}\right)=0
$$

Plücker : $\left(p_{11}, p_{12}, p_{22}\right) \hookrightarrow\left(1, p_{11}, p_{12}, p_{22}, p_{11} p_{22}-p_{12}^{2}\right)$

Now we see how to define Monge-Ampère equations by using characteristics directions and how to characterize such PDEs in terms of some canonical conformal structures on Lagrangian Grassmannians

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

\mathcal{D}_{m}

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

\mathcal{D}_{m}

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

$$
\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}
$$

$\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}=\mathcal{E}_{\mathcal{D}^{\perp}}$

$\mathcal{E}_{\mathcal{D}} \stackrel{\text { def }}{=}\left\{m^{1} \in M^{(1)} \mid L_{m^{1}} \cap \mathcal{D}_{\pi\left(m^{1}\right)} \neq 0\right\}=\mathcal{E}_{\mathcal{D}^{\perp}}$
Locally

$$
\mathcal{E}_{\mathcal{D}}: \operatorname{det}\left(\begin{array}{cc}
u_{x x}-f_{11} & u_{x y}-f_{12} \\
u_{x y}-f_{21} & u_{y y}-f_{22}
\end{array}\right)=0
$$

$\mathcal{E}_{\mathcal{D}}$ is a parabolic una Monge-Ampère equation $\Longleftrightarrow f_{12}=f_{21} \Longleftrightarrow \mathcal{D}=\mathcal{D}^{\perp}$.

Rank 1 vectors of $\operatorname{LGr}(2,4)$ and its conformal structure

Let $\left(p_{11}, p_{12}, p_{22}\right)$ be a chart on $\operatorname{LGr}(2,4)$.

Rank 1 vectors of $\operatorname{LGr}(2,4)$ and its conformal structure

Let $\left(p_{11}, p_{12}, p_{22}\right)$ be a chart on $\operatorname{LGr}(2,4)$.

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 1 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Rank 1 vectors of $\operatorname{LGr}(2,4)$ and its conformal structure

Let $\left(p_{11}, p_{12}, p_{22}\right)$ be a chart on $\operatorname{LGr}(2,4)$.

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 1 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Equivalently

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 1 \Longleftrightarrow g(X, X)=0
$$

where

$$
g=d p_{11} d p_{22}-d p_{12}^{2} \quad \text { is defined up to a conformal factor }
$$

Rank 1 vectors of $\operatorname{LGr}(2,4)$ and its conformal structure

Let $\left(p_{11}, p_{12}, p_{22}\right)$ be a chart on $\operatorname{LGr}(2,4)$.

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 1 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Equivalently

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 1 \Longleftrightarrow g(X, X)=0
$$

where

$$
g=d p_{11} d p_{22}-d p_{12}^{2} \quad \text { is defined up to a conformal factor }
$$

$$
\text { So, we have a natural conformal structure on } \operatorname{LGr}(2,4)
$$

Levi-Civita connection up to a conformal changing of the metric
Let

$$
\tilde{g}=e^{2 \lambda} g, \quad \lambda \in C^{\infty}(\operatorname{LGr}(2,4))
$$

Levi-Civita connection up to a conformal changing of the metric
Let

$$
\tilde{g}=e^{2 \lambda} g, \quad \lambda \in C^{\infty}(\operatorname{LGr}(2,4))
$$

Then

$$
\nabla_{X}^{\tilde{g}} Y=\nabla_{X}^{g} Y+\beta(X, Y)
$$

for some β depending on g and λ.

Levi-Civita connection up to a conformal changing of the metric
Let

$$
\tilde{g}=e^{2 \lambda} g, \quad \lambda \in C^{\infty}(\operatorname{LGr}(2,4))
$$

Then

$$
\nabla_{X}^{\tilde{g}} Y=\nabla_{X}^{g} Y+\beta(X, Y)
$$

for some β depending on g and λ.

- The condition

$$
\left.\left.\operatorname{Hess}(f)\right|_{f=0} \approx g\right|_{f=0} \quad(\mathrm{II} \approx \mathrm{I})
$$

is independent of the choice of g in its conformal class.

Levi-Civita connection up to a conformal changing of the metric
Let

$$
\tilde{g}=e^{2 \lambda} g, \quad \lambda \in C^{\infty}(\operatorname{LGr}(2,4))
$$

Then

$$
\nabla_{X}^{\tilde{g}} Y=\nabla_{X}^{g} Y+\beta(X, Y)
$$

for some β depending on g and λ.

- The condition

$$
\left.\left.\operatorname{Hess}(f)\right|_{f=0} \approx g\right|_{f=0} \quad(\mathrm{II} \approx \mathrm{I})
$$

is independent of the choice of g in its conformal class.

- A straightforward computation shows that

$$
\mathrm{II}-\mathrm{H} \cdot \mathrm{I}, \quad \mathrm{H} \text { mean curvature }
$$

is a conformal invariant.

$$
S \subset \mathrm{LGr}(2,4) \text { is a hyperplane section } \Longleftrightarrow \mathrm{II}-\mathrm{H} \cdot \mathrm{I}=0
$$

Rank 2 vectors of $\operatorname{LGr}(3,6)$ and its conformal structure

Let $p_{i j}$ be coordinates on $\operatorname{LGr}(3,6)$.

Rank 2 vectors of $\operatorname{LGr}(3,6)$ and its conformal structure

Let $p_{i j}$ be coordinates on $\operatorname{LGr}(3,6)$.
Recall that

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 2 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Rank 2 vectors of $\operatorname{LGr}(3,6)$ and its conformal structure

Let $p_{i j}$ be coordinates on $\operatorname{LGr}(3,6)$.
Recall that

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 2 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Equivalently

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 2 \Longleftrightarrow T(X, X, X)=0
$$

where

$$
T=\operatorname{det}\left(d p_{i j}\right) \quad \text { is defined up to a conformal factor }
$$

Rank 2 vectors of $\operatorname{LGr}(3,6)$ and its conformal structure

Let $p_{i j}$ be coordinates on $\operatorname{LGr}(3,6)$.
Recall that

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 2 \Longleftrightarrow \operatorname{det}\left(X_{i j}\right)=0
$$

Equivalently

$$
X=\sum_{i \leq j} X_{i j} \partial_{p_{i j}} \text { is of rank } 2 \Longleftrightarrow T(X, X, X)=0
$$

where

$$
T=\operatorname{det}\left(d p_{i j}\right) \quad \text { is defined up to a conformal factor }
$$

Hyperplane sections of $\operatorname{LGr}(3,6)$

Let us consider the symmetric 3 -tensor T :

$$
\begin{gathered}
T=\operatorname{det}\left(d p_{i j}\right), \quad i, j=1, \ldots, 3 \\
X\lrcorner T \text { is a (pseudo) metric } \Longleftrightarrow X \text { is of maximal rank }
\end{gathered}
$$

Hyperplane sections of $\operatorname{LGr}(3,6)$

Let us consider the symmetric 3 -tensor T :

$$
\begin{gathered}
T=\operatorname{det}\left(d p_{i j}\right), \quad i, j=1, \ldots, 3 \\
X\lrcorner T \text { is a (pseudo) metric } \Longleftrightarrow X \text { is of maximal rank }
\end{gathered}
$$

Theorem Let $X \in \operatorname{sym}([T])$ be of maximal rank. Then the condition

$$
\begin{equation*}
\mathrm{II}^{X\lrcorner T} \approx \mathrm{I}^{X\lrcorner T} \tag{0.1}
\end{equation*}
$$

is independent of X.

Hyperplane sections of $\operatorname{LGr}(3,6)$

Let us consider the symmetric 3 -tensor T :

$$
\begin{gathered}
T=\operatorname{det}\left(d p_{i j}\right), \quad i, j=1, \ldots, 3 \\
X\lrcorner T \text { is a (pseudo) metric } \Longleftrightarrow X \text { is of maximal rank }
\end{gathered}
$$

Theorem Let $X \in \operatorname{sym}([T])$ be of maximal rank. Then the condition

$$
\begin{equation*}
\mathrm{II}^{X\lrcorner T} \approx \mathrm{I}^{X\lrcorner T} \tag{0.1}
\end{equation*}
$$

is independent of X.
Theorem If a hypersurface of $\operatorname{LGr}(3,6)$ satisfy condition (0.1), then it is a hyperplane section of $\operatorname{LGr}(3,6)$, i.e. a Monge-Ampère equation.

Hyperplane sections of $\operatorname{LGr}(3,6)$

Let us consider the symmetric 3 -tensor T :

$$
\begin{gathered}
T=\operatorname{det}\left(d p_{i j}\right), \quad i, j=1, \ldots, 3 \\
X\lrcorner T \text { is a (pseudo) metric } \Longleftrightarrow X \text { is of maximal rank }
\end{gathered}
$$

Theorem Let $X \in \operatorname{sym}([T])$ be of maximal rank. Then the condition

$$
\begin{equation*}
\mathrm{II}^{X\lrcorner T} \approx \mathrm{I}^{X\lrcorner T} \tag{0.1}
\end{equation*}
$$

is independent of X.
Theorem If a hypersurface of $\operatorname{LGr}(3,6)$ satisfy condition (0.1), then it is a hyperplane section of $\operatorname{LGr}(3,6)$, i.e. a Monge-Ampère equation.

$$
\mathrm{II}^{X\lrcorner T}-\text { ??? } \cdot \mathrm{I}^{X\lrcorner T}=0
$$

Hyperplane sections of $\operatorname{LGr}(3,6)$

Let us consider the symmetric 3 -tensor T :

$$
\begin{gathered}
T=\operatorname{det}\left(d p_{i j}\right), \quad i, j=1, \ldots, 3 \\
X\lrcorner T \text { is a (pseudo) metric } \Longleftrightarrow X \text { is of maximal rank }
\end{gathered}
$$

Theorem Let $X \in \operatorname{sym}([T])$ be of maximal rank. Then the condition

$$
\begin{equation*}
\mathrm{II}^{X\lrcorner T} \approx \mathrm{I}^{X\lrcorner T} \tag{0.1}
\end{equation*}
$$

is independent of X.
Theorem If a hypersurface of $\operatorname{LGr}(3,6)$ satisfy condition (0.1), then it is a hyperplane section of $\operatorname{LGr}(3,6)$, i.e. a Monge-Ampère equation.

$$
\mathrm{II}^{X\lrcorner T}-\text { ??? } \cdot \mathrm{I}^{X\lrcorner T}=0
$$

Hyperquadric sections?

