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Introduction

Appearance of soliton equations with self-consistent sources:

• Mel’nikov 1983-92, ...

• Mathematically:
• via a multiscaling limit of familiar integrable systems

(Zakharov & Kuznetsov 1986, ...)
• via a symmetry constraint imposed on a higher than

two-dimensional integrable system
(Konopelchenko, Sidorenko, Strampp 1991, Oevel 1993, ...)

• Physically: often a certain approximation of nonlinear
interaction of waves with long and short wave length.
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Example 1: KdV with self-consistent sources

4 ut − uxxx − 3 (u2)x = (rᵀ r)x rxx = P2 r − u r

Without the source on the rhs of the KdV equation, the last
equation is half of its Lax pair. Somehow an equation rt = . . .
seems to be missing (e.g., in order to address integrability).

Plot of u for a 2-soliton solution of the
above scalar KdV equation with self-
consistent sources. Here an arbitrary
function of t that is present in the so-
lution has been chosen as sin(3t). There
are lots of possibilities ...
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Example 2: (2+1)-dimensional Yajima-Oikawa system
Yajima-Oikawa system

ut = (rᵀr)x i rt = rxx − u r

Integrable three-dimensional generalization (Oikawa, Okamura,
Funakoshi ‘89):

ut = (rᵀr)x i (rt + ry ) = rxx − u r

This looks like a reasonable evolution system ..., but via the
transformation ξ = x + y − t, τ = t − y , η = y , we get

uτ = uξ + (rᵀr)ξ i rη = rξξ − u r

(Grimshaw ‘77, Mel’nikov ‘83). Again, somehow an equation
rτ = . . . is missing.

We will present a more coherent picture in the sequel.
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Guiding example: potential KP equation

(
4φ0,t − φ0,xxx − 6 (φ0,x)2

)
x

−3φ0,yy + 6 [φ0,x , φ0,y ] = 0
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Binary Darboux transformation for pKP
Associated linear system and its adjoint:

θy = θxx + 2φ0,x θ θt = θxxx + 3φ0,x θx +
3

2
(φ0,y + φ0,xx) θ

ηy = −ηxx − 2 η φ0,x ηt = ηxxx + 3 ηx φ0,x −
3

2
η (φ0,y − φ0,xx)

These equations imply the compatibility of the system

Ωx = −η θ Ωy = −η θx + ηx θ

Ωt = −η θxx + ηx θx − ηxx θ − 3 η φ0,x θ

hence the existence of a “potential” Ω. Then it follows that

φ = φ0 − θΩ−1 η

is a new solution of the pKP equation, and

q = θΩ−1 r = Ω−1 η

solve the linear equations with φ instead of φ0. This is an essential
step in the binary Darboux transformation for the pKP equation.
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Remark

If φ is an m ×m matrix, then
θ, q have matrix size m × n,
η, r have size n ×m,
Ω and ω are n × n matrices.

Hence we consider a vectorial binary Darboux transformation, so
there is no need to iterate it.
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Deformation of the potential Ω

Ωx = −η θ+c1 ,

Ωy = −η θx + ηx θ+c2 ,

Ωt = −η θxx + ηx θx − ηxx θ − 3 η φ0,x θ+c3

with (matrix) functions ci , i = 1, 2, 3. Consistency requires that

c1 = ωx c2 = ωy c3 = ωt

with a potential ω. Hence this deformation actually amounts to
the substitution

Ω 7→ Ω− ω

in the previous equations. Then φ, q, r no longer satisfy the pKP
equation and the linear systems! Instead we find ...
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qy − qxx = 2φx q + (−q ωy + q ωxx + 2 qx ωx) Ω−1 ,

qt − qxxx = 3φxqx +
3

2
(φy + φxx) q +

3

2
(−q ωy + q ωxx + 2 qx ωx) r q

−(q ωt − q ωxxx − 3 (qx ωx)x − 3φx q ωx) Ω−1

ry + rxx = −2 r φx − Ω−1 (ωy r + ωxx r + 2ωx rx) ,

rt − rxxx = 3 rx φx −
3

2
r (φy − φxx) +

3

2
r q (ωy r + ωxx r + 2ωx rx)

−Ω−1 (ωt r − ωxxx r − 3 (ωx rx)x − 3ωx r φx)

and the extended pKP equation(
4φt − φxxx − 6 (φx)2

)
x
− 3φyy + 6 [φx , φy ]

= (4 q ωt r − 6 q ωx ry − 6 q ωx rxx + 6 q ωy rx − 18 q ωxx rx

−6 q ωxy r − 10 q ωxxx r)x + (6 q ωx rx − 3 q ωy r + 9 q ωxx r)y
+ (6 q ωx rx − 3 q ωy r + 9 q ωxx r)xx

Now we look for choices of ω, such that Ω gets eliminated in some
of the equations for q and r ! This requires ωx = 0 and either ...
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1. ω = ω(t)(
4φt − φxxx − 6 (φx)2

)
x
− 3φyy + 6 [φx , φy ] = 4 (q ωt r)x

qy − qxx = 2φx q ry + rxx = −2 r φx

Via q̃ = qQ and r̃ = R r , with a suitable choice of Q(t) and
R(t), we can absorb ωt :(

4φt − φxxx − 6 (φx)2
)
x
− 3φyy + 6 [φx , φy ] = (q̃ r̃)x

q̃y − q̃xx = 2φx q̃ r̃y + r̃xx = −2 r̃ φx

Mel’nikov, ...
2. ω = ω(y) (

4φt − φxxx − 6 (φx)2
)
x
− 3φyy + 6 [φx , φy ]

= 3 (q ωy rx − qx ωy r)x − 3 (q ωy r)y

qt − qxxx = 3φx qx +
3

2
(φy + φxx) q − 3

2
q ωy r q

rt − rxxx = 3 rx φx −
3

2
r (φy − φxx) +

3

2
r q ωy r

Again, ωy can be absorbed.
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Remarks

The above procedure provides us with a hetero binary Darboux
transformation from the pKP equation and its associated linear
system to any of the pKP systems with self-consistent sources.

The rank of ωt , respectively ωy , determines the number of sources.

The method solves the extended (or deformed) pKP system, for
any given (matrix) function ω(t), resp. ω(y).

Via the step to q̃ and r̃ , this is then turned into a solution of the
extended pKP system, where ω is absorbed.

As a consequence, the scs-extensions of pKP admit solutions
depending on arbitrary functions of a single variable !
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Exact pKP solutions in case of vanishing seed

If φ0 = 0, special solutions of linear and adjoint linear system are

θ = A eϑ(P) B η = C e−ϑ(Q) D ϑ(P) = P x + P2 y + P3 t

with constant matrices A, B, C , D, P and Q (of appropriate size).

=⇒ Ω = ω − C e−ϑ(Q) X eϑ(P) B

with a constant matrix X that satisfies the Sylvester equation

X P − Q X = D A

Now

φ = φ0 − θΩ−1 η q = θΩ−1 r = Ω−1 η

yields explicit solutions of the extended matrix pKP equations with
self-consistent sources (and with ω(t), respectively ω(y)).
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In the framework of bidifferential calculus, we can abstract the
underlying structure from the specific example (here pKP) and
then obtain corresponding self-consistent source extensions of quite
a number of other integrable equations.
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Bidifferential calculus
A graded associative algebra is an associative algebra
Ω =

⊕
r≥0 Ωr over C, where A := Ω0 is an associative algebra

over C and Ωr , r ≥ 1, are A-bimodules such that Ωr Ωs ⊆ Ωr+s .
A bidifferential calculus is a unital graded associative algebra Ω,
supplied with two (C-linear) graded derivations d, d̄ : Ω→ Ω of
degree one (hence dΩr ⊆ Ωr+1, d̄Ωr ⊆ Ωr+1), and such that

d2 = d̄2 = dd̄ + d̄d = 0

Several integrable equations can be expressed either as

d d̄φ0 + dφ0 dφ0 = 0

with φ0 ∈ Mat(m,m,A), or as

d [(d̄g0) g−10 ] = 0

The two equations are related by the Miura equation

d̄g0 = (dφ0) g0

which has both equations as integrability conditions.
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Linear and adjoint linear system

A linear system and an adjoint linear system for the above
equation for φ0 is given by

d̄θ = (dφ0) θ + (dθ) ∆

respectively

d̄η = −η dφ0 + Γ dη

where θ ∈ Mat(m, n,A), η ∈ Mat(n,m,A), ∆, Γ ∈ Mat(n, n,A).
They have to satisfy

d̄∆ = (d∆) ∆ d̄Γ = ΓdΓ

as a consequence of the properties of d and d̄.
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Binary Darboux transformation
Let Ω be a solution of

Γ Ω− Ω ∆ = η θ

d̄Ω = (dΩ) ∆− (dΓ) Ω + (dη) θ

The equations resulting from acting with d or d̄ on the last
equation are satisfied as a consequence of the preceding equations.
It follows (Dimakis & M-H 2008) that

φ = φ0 − θΩ−1 η

is a new solution of the φ-equation and

q = θΩ−1 r = Ω−1 η

satisfy

d̄q = (dφ) q + d(q Γ) d̄r = −r (dφ) + d(∆ r)
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Deformation of the potential
Guided by the pKP example: Ω 7→ Ω− ω. Hence

Γ Ω− Ω ∆ = η θ+c

d̄Ω = (dΩ) ∆− (dΓ) Ω + (dη) θ+γ

where c := Γω − ω∆, γ := d̄ω − (dω) ∆ + (dΓ)ω.
By straightforward computations, one shows that

φ = φ0 − θΩ−1 η q = θΩ−1 r = Ω−1 η

constitutes a solution of

d d̄φ+ dφ dφ = d( q γ r − q d(c r) )

and

d̄q = (dφ) q + d(q Γ)−q γ Ω−1 − (dq) c Ω−1

d̄r = −r dφ+ d(∆ r)−Ω−1 γ r + Ω−1 d(c r)
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Correspondingly for the g -equation
If φ0 and g0 satisfy the Miura equation, then φ, q, r together with

g = (I − θΩ−1 Γ−1η) g0

(I identity matrix) satisfy

d̄g − (dφ) g = (q γ + (dq) c) Ω−1 Γ−1 Ω r g0

If c = 0, i.e., Γω = ω∆, then we have

g−1 = g−10 (I + θ∆−1 Ω−1 η)

and g satisfies the extended Miura equation

d̄g − (dφ) g = (q γ∆−1 r) g

which implies the following extension of the g -equation:

d[(d̄g) g−1] = d(q γ∆−1 r)

Via the extended Miura equation we can eliminate φ in the
previous equations for q and r in favor of g .
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Choice of the graded algebra

In the following examples, we specify the graded algebra Ω to be
of the form

Ω = A⊗ Λ , Λ =
2⊕

i=0

Λi

where Λ is the exterior (Grassmann) algebra of the vector space
C2. It is then sufficient to define d and d̄ on A, since they extend
to Ω in a straightforward way, treating the elements of Λ as
constants. Moreover, d and d̄ extend to matrices over Ω.
We choose a basis ξ1, ξ2 of Λ1.
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Recovering the pKP example

Let A0 be the space of smooth complex functions on R3. We
extend it to A = A0[∂x ]. On A we define

df = [∂, f ]ξ1 +
1

2
[∂y + ∂2, f ]ξ2, d̄f =

1

2
[∂y − ∂2, f ]ξ1 +

1

3
[∂t − ∂3, f ]ξ2

The maps d and d̄ extend to linear maps on Ω = A⊗ Λ and
moreover to matrices over Ω. We need to choose

∆ = Γ = −∂

in order to eliminate explicit operator terms in the linear equations.
c = 0 iff ωx = 0. The expression for γ takes the form

γ =
1

2
ωy ξ1 +

(1

3
ωt +

1

2
ωy ∂

)
ξ2

We recover all eqs in the pKP section (with ωx = 0).
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Matrix 2d-Toda with self-consistent sources
A0 complex functions on R2 × Z, smooth in the first two variables.
A = A0[S, S−1], S shift operator in discrete variable k ∈ Z.

df = [S, f ] ξ1 + [∂y , f ] ξ2 , d̄f = [∂x , f ] ξ1 − [S−1, f ] ξ2

For f ∈ A, we write f ±(x , y , k) := f (x , y , k ± 1). We write

φ = ϕS−1, q = q̃ S−1, r = S−1 r̃ , ∆ = Γ = S−1, Ω = Ω̃ S, ω = ω̃ S

and set c = 0, which is ω̃+ = ω̃.

Source-free case: d d̄φ+ dφ dφ = 0 becomes

ϕxy − (ϕ+ − ϕ) (ϕy + I ) + (ϕy + I ) (ϕ− ϕ−) = 0

In the scalar case, in terms of V := ϕy , this reads
(ln(1 + V ))x = ϕ+ − ϕ+ ϕ−. Differentiating with respect to y , it
becomes the two-dimensional Toda lattice equation
(ln(1 + V ))xy = V + − 2V + V− (Mikhailov ’79).
scs-extension and solutions: Hu et al. 2007.
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1. ω̃x = 0.

ϕxy − (ϕ+ − ϕ) (ϕy + I ) + (ϕy + I ) (ϕ− ϕ−) = (q̃+ ω̃y r̃−)− − q̃+ ω̃y r̃−

Those of the equations for q̃ and r̃ that do not involve Ω̃ are

q̃x = q̃+ − q̃ + (ϕ+ − ϕ) q̃ , r̃x = r̃ − r̃− − r̃ (ϕ+ − ϕ)

The Miura-dual is

(gx g−1)y − [g+ g−1 − (g+ g−1)−] = −q̃+ ω̃y r̃ + (q̃+ ω̃y r̃)− ,

q̃x = q̃+ − q̃ + gx g−1 q̃ , r̃x = r̃ − r̃− − r̃ gx g−1

In the scalar case, in terms of u = ln g this takes the form

uxy − eu
+−u + eu−u

−
= −q̃+ ω̃y r̃ + (q̃+ ω̃y r̃)− ,

q̃x = q̃+ − q̃ + ux q̃ , r̃x = r̃ − r̃− − ux r̃
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2. ω̃y = 0.

ϕxy − (ϕ+ − ϕ) (ϕy + I ) + (ϕy + I ) (ϕ− ϕ−) = (q̃ ω̃x r̃−)y

Those of the equations for q̃ and r̃ that do not depend on Ω̃ are

q̃y = q̃ − q̃− − ϕy q̃− , r̃y = r̃+ − r̃ + r̃+ ϕ+
y

The Miura-dual is

(gx g−1)y − [g+ g−1 − (g+ g−1)−] = −(q̃ ω̃x r̃)y ,

q̃y = q̃ − g (g−1 q̃)− , r̃y = −r̃ + r̃+ g+ g−1

In the scalar case (m = 1), in terms of u = ln g , a = e−y g−1 q̃ ω̃x

and b = ey g r̃ , this can be expressed as follows,

uxy − eu
+−u + eu−u

−
= −(a b)y ,

ay + uy a + a− = 0 , by − b uy − b+ = 0 .

Such a system appeared in X. Liu, Y. Zeng, R. Liu 2008.
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A matrix version of the discrete KP equation with
self-consistent sources

Let A0 be the space of complex functions of discrete variables
k0, k1, k2 ∈ Z, and S0, S1,S2 corresponding shift operators. We
extend A0 to A = A0[S±10 ,S±11 ,S±12 ] and define d and d̄ on A via

df =
2∑

i=1

c−1i [S−1i , f ] ξi , d̄f =
2∑

i=1

[S−1i S0, f ] ξi

where ci are constants. Then d and d̄ extend to Ω = A⊗Λ and to
matrices over Ω. In the following we will use the notation

f,0 := S0 f S−10 , f,−0 := S−10 f S0 , f,i := Si f S−1i , f,−i := S−1i f Si i = 1, 2

We write

∆ = Γ = S0, Ω = Ω̃ S−10 , ω = ω̃ S−10 , φ = ϕS0, q = q̃ S0, r = S0 r̃
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The resulting g -equations are

ci

(
(g,i g−1,0 ),j − g,i g−1,0

)
− cj

(
(g,j g−1,0 ),i − g,j g−1,0

)
= (ci − 1) [(q̃,i (ω̃,i − ω̃) r̃,0),j − q̃,i (ω̃,i − ω̃) r̃,0]

−(cj − 1) [(q̃,j (ω̃,j − ω̃) r̃,0),i − q̃,j (ω̃,j − ω̃) r̃,0]

q̃,i = (ci − 1)−1 [ci g,i g−1,0 q̃,0 − q]− [q̃,i (ω̃,i − ω̃) r̃,0] q̃,0

−q̃,i (ω̃,i − ω̃) Ω̃−1,0,0

r̃,−i = (ci − 1)−1 [ci r̃,−0 g,−0 g−1,−i − r̃ ]− r̃,−0 [q̃,−0 (ω̃ − ω̃,−i ),−0 r̃,−i ]

+Ω̃−1,0 (ω̃ − ω̃,−i ) r̃,−i

Set ω̃,1 = ω̃, keep only equations without Ω̃:

c2
(

(g,2 g−1,0 ),1 − g,2 g−1,0

)
− c1

(
(g,1 g−1,0 ),2 − g,1 g−1,0

)
= (c2 − 1) [(q̃,2 (ω̃,2 − ω̃) r̃,0),1 − q̃,2 (ω̃,2 − ω̃) r̃,0] ,

q̃,1 = (c1 − 1)−1 [c1 g,1 g−1,0 q̃,0 − q̃] ,

r̃,−1 = (c1 − 1)−1 [c1 r̃,−0 g,−0 g−1,−1 − r̃ ]
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Scalar discrete KP equation with self-consistent sources
Let m = 1, ω̃,2 − ω̃ = K (c1 − 1)/[c1(c2 − 1)] constant, and

g =
τ,−0
τ

q̃ =
ρ,−0
τ

r̃ =
σ

τ,−0

Then

(c1 − 1) τ,0 ρ,1 + τ,0,1 ρ− c1 τ,1 ρ,0 = 0

(c1 − 1) τ,1 σ,0 + τ σ,0,1 − c1 τ,0 σ,1 = 0

1

τ,0 τ,1,2

(
c2 τ,0,1 τ,2 − c1 τ,0,2 τ,1 − K ρ,2 σ,0,1

)
=

[ 1

τ,0 τ,1,2

(
c2 τ,0,1 τ,2 − c1 τ,0,2 τ,1 − K ρ,2 σ,0,1

)]
,−0

The last equation is equivalent to
c2 τ,0,1 τ,2 − c1 τ,0,2 τ,1 − c12 τ,0 τ,1,2 = K ρ,2 σ,0,1

with an arbitrary scalar c12 that does not depend on the discrete
variable k0.
→ discrete KP equation with scs (Hu&Wang ‘06, Doliwa&Lin ‘14).
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The full system of equations for φ, q, r ,Ω

The following is the abstract system, for which we have a hetero
binary Darboux transformation:

d d̄φ+ dφ dφ = d(q γ r)

d̄q = (dφ) q + d(q Γ) + q γ Ω̂

d̄r = −r dφ+ d(∆ r) + Ω̂ γ r

∆ Ω̂− Ω̂ Γ = r q

d̄Ω̂ = d(Ω̂Γ) + (dr) q + Ω̂ γ Ω̂

where

d̄∆ = (d∆) ∆ d̄Γ = ΓdΓ Γω − ω∆ = 0

γ := d̄ω − (dω) ∆ + (dΓ)ω − κω − ω λ

and we have set Ω̂ := −Ω−1.
Let’s take a look at this in the pKP hierarchy case.
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Extension of the pKP hierarchy
A0: smooth functions of x and t = (t1, t2, . . .)

df = [Eµ1 , f ] ξ1 + [Eµ2 , f ] ξ2

d̄f = [(µ−11 − ∂x)Eµ1 , f ] ξ1 + [(µ−12 − ∂x)Eµ2 , f ] ξ2

Miwa shift operator: Eµf = f[µ] Eµ, f[µ](x , t) = f (x , t + [µ]),
[µ] = (µ, µ2/2, µ3/3, . . .). ∆ = Γ = −In∂x . Then ωx = 0 and

(µ−12 − φ+ φ−[µ2])−[µ1] (µ−11 − φ+ φ−[µ1])

−(µ−11 − φ+ φ−[µ1])−[µ2] (µ−12 − φ+ φ−[µ2])− (φ−[µ1] − φ−[µ2])x
= µ−11 q−[µ1] (ω − ω−[µ1]) r − µ−11 q−[µ1]−[µ2] (ω − ω−[µ1])−[µ2] r−[µ2]

−µ−12 q−[µ2] (ω − ω−[µ2]) r + µ−12 q−[µ2]−[µ1] (ω − ω−[µ2])−[µ1] r−[µ1]

µ−11 (q − q−[µ1])− qx = (φ− φ−[µ1]) q + µ−11 q−[µ1] (ω − ω−[µ1]) Ω̂ ,

µ−11 (r[µ1] − r)− rx = −r (φ[µ1] − φ) + µ−11 Ω̂ (ω[µ1] − ω) r[µ1]

Ω̂x = −r q µ−11 (Ω̂[µ1] − Ω̂) = −r q[µ1] + µ−11 Ω̂ (ω[µ1] − ω) Ω̂
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The simplest equations

qt1 = qx + q ωt1Ω̂ rt1 = rx + Ω̂ωt1r

qt2 = qxx + 2 (φt1 − q ωt1r) q + q ωt2 Ω̂

rt2 = −rxx − 2r (φt1 − q ωt1r) + Ω̂ωt2r

(φt1 − φx − q ωt1r)t1 = 0

Setting ωt2 = 0 and dropping the first two equations, we obtain

ut1 − ux = −2 (q ωt1r)x qt2 = qxx − u q rt2 = −rxx + r u

in terms of u = −2 (φt1 − q ωt1r). Via t2 7→ −i t2, and with the
reduction r = q† (u, ωt1 Hermitian), this becomes

ut1 − ux = −2 (q ωt1q†)x i qt2 = qxx − u q

which is, up to a transformation of the independent variables and
absorption of ω, the (2+1)-dimensional Yajima-Oikawa system.
Now we know it has solutions depending on arbitrary functions of
t1 and we can easily construct such solutions.
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Summary

• Integrable systems with self-consistent sources arise via a
simple deformation of the potential Ω, which is at the heart of
the binary Darboux transformation method, and by dropping
some equations that emerge from the linear system.

• The essence of this has been formulated in the framework of
bidifferential calculus. Choosing any realization of the latter,
one should, in general, obtain scs-extensions of the respective
integrable equations.

• For the integrable equations addressed so far (KdV,
Boussinesq, KP, sine-Gordon, NLS, DS, 2dToda, discrete KP),
we recovered all known versions of scs-extensions, even some
more, and we generalized them to matrix versions.

• Our approach shows that the appearance of arbitrary
functions of a single independent variable is a typical feature
(on which the “source generation method” of Hu and Wang
(2006) is based).
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Thanks for your attention !
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