Finite dynamics and integrability for Rapoport-Leas models

Rapoport-Leas dynamics

Valentin Lychagin
UiTo, Troms \varnothing, Norway and IPU, Moscow, Russia

Workshop on Integrable Nonlinear Equations,
19 October 2015,
Mikulov, Czech Republic,

Rapoport -Leas model

The generalized Rapoport-Leas equation

$$
u_{t}=A(u)_{x}+B(u)_{x x} .
$$

describes a displacement of the one dimensional immiscible two phase fluid in a porous media.
Here $u(t, x)$ is a saturation, and functions $A(u), B(u)$ depends on the media and are known only experementally.

Zoo

- The nonlinear heat equation:

$$
u_{t}=\left(K(u) u_{x}\right)_{x},
$$

- The Burgers equation:

$$
u_{t}=u u_{x}+u_{x x}
$$

- The original Rapoport-Leas equation (oil-water):

$$
u_{t}+(f(u))_{x}+\varepsilon\left(K(u) f(u) J^{\prime}(u) u_{x}\right)_{x}=0
$$

where $u=u(t, x)$ - water saturation, $f(u)$ fractional flow function, $K(u)$ - the oil relative permeability, and $J(u)$ - Leverett function. The parameter ε depends on geometry of the poros media and inverse to the Rapoport-Leas number.

Dynamics

Let,

$$
\begin{equation*}
u_{t}=\phi\left(u, u_{x}, u_{x x}\right) \tag{1}
\end{equation*}
$$

be an evolutionary equation.
Naively, by (finite) dynamics we mean (LL) an "finite dimensional submanifold in a function space" which is invariant wrt the evolutionary vector field

$$
\epsilon_{\phi}=\sum_{k \geq 0} D^{k}(\phi) \partial_{u_{k}}
$$

where

$$
D=\frac{d}{d x}
$$

is the total derivation.

Finite Dynamics

By a finite dynamics for equation (1) we mean an ordinary differential equation

$$
\begin{equation*}
F\left(u, u_{x}, \ldots, u_{x . . x}\right)=0 \tag{2}
\end{equation*}
$$

for which $\phi\left(u, u_{1}, u_{2}\right)$ is a symmetry, i.e.

$$
\begin{equation*}
[\phi, F]=0 \bmod \langle D F\rangle \tag{3}
\end{equation*}
$$

where $\langle D F\rangle$ is the differential ideal generated by $F\left(u, u_{1}, \ldots, u_{k}\right)$ and

$$
[\phi, F]=\epsilon_{\phi}(F)-\epsilon_{F}(\phi)
$$

is the Jacobi bracket.
Compare with the condition

$$
[\phi, F]=0 \bmod \langle D \phi\rangle
$$

for F to be a symmetry of (1).

Singularities and stability

Equation (3) could be rewritten in the form

$$
\varepsilon_{\phi}(F)=a F+b D(F)
$$

for some functions a and b.
Denote by a^{F} the restriction of a on differential equation (2).

Theorem

Differential equation (2) is an attractor (repeller) for dynamics (1) if $a^{F}<0$ ($a^{F}>0$, respectively).

Fixed points for dynamics (1) are solutions of the ordinary differential equation

$$
\phi\left(u, u_{x}, u_{x x}\right)=0,
$$

and therefore fixed points for dynamics (2) are solutions of the system

$$
\begin{aligned}
\phi\left(u, u_{x}, u_{x x}\right) & =0 \\
F\left(u, u_{x}, \ldots, u_{x . . x}\right) & =0 .
\end{aligned}
$$

Dynamics

Assume that equation (2) is resolved with respect to the higher derivative

$$
\begin{equation*}
u_{k}=f\left(u, \ldots, u_{k-1}\right) \tag{4}
\end{equation*}
$$

Then the solution space of this equation could be identified with \mathbb{R}^{k} by taking the initial data at a point $x_{0}:\left(u\left(x_{0}\right), u_{1}\left(x_{0}\right), \ldots, u_{k-1}\left(x_{0}\right)\right)$. In this case the dynamics is given by the vector field

$$
E_{\phi}=\phi^{f} \partial_{u}+D \phi^{f} \partial_{u_{1}}+\cdots+D^{k-1} \phi^{f} \partial_{u_{k-1}}
$$

where ϕ^{f} is the restriction of ϕ on differential equation (4). Compare: Symmetries \Longleftrightarrow Dynamics \Longleftrightarrow Anzats.

First order RL-dynamics

Theorem

First order dynamics for RL-equation has the form

$$
B^{\prime}(u) u_{1}+A(u)-c_{2} u+c_{1}=0
$$

where $c_{1}, c_{2} \in \mathbb{R}$ are arbitrary constants.
The dynamics on the initial data is given by vector field

$$
E_{\phi}=-\frac{c_{2}}{B^{\prime}(u)}\left(A(u)-c_{2} u+c_{1}\right) \partial_{u}
$$

Remark the critical points of the dynamics are:

- $B^{\prime}(u)=0$, but $A(u)-c_{2} u+c_{1} \neq 0$, points where the dynamics is not defined (the saturation function grows too fast), and
- $A(u)-c_{2} u+c_{1}=0$, but $B^{\prime}(u) \neq 0$, the fixed points of the dynamics are:
(1) repellers, if $c_{2}\left(c_{2}-A\right) B^{\prime}<0$, and
Ω attractors if $c_{0}\left(c_{0}-A\right) R^{\prime}>0$

Toy example: 1st order dynamics for Burgers equation

For the Burgers equation

$$
u_{t}=u u_{x}+u_{x x}
$$

the first order dynamics has the form

$$
\begin{equation*}
u_{x}+\frac{u^{2}}{2}-c_{2} u+c_{1}=0 \tag{5}
\end{equation*}
$$

with vector field

$$
E_{\phi}=c_{2}\left(\frac{u^{2}}{2}-c_{2} u+c_{1}\right) \partial_{u}
$$

Solutions (5) has the form

$$
u=\sqrt{c_{2}^{2}-c_{1}} \tanh \left(\frac{\sqrt{c_{2}^{2}-c_{1}}}{2}(x+c)\right)+c_{2}
$$

and its evolution along E_{ϕ} is given by

$$
c=c_{2} t+c_{0}
$$

RL dynamics of the second order:

$A^{\prime \prime}(u) \neq 0$.

Theorem

Let $A(u)$ be an arbitrary function with $A(u)^{\prime \prime} \neq 0$, and let c be a constant. Then the following RL- equations

$$
u_{t}=c\left(A(u)^{\prime \prime} u_{x x}+A(u)^{\prime \prime \prime} u_{x}^{2}\right)+A(u)^{\prime} u_{x}
$$

has dynamics of order 2 :

$$
A(u)^{\prime \prime} u_{x x}+A(u)^{\prime \prime \prime} u_{x}^{2}=0 .
$$

The corresponding evolutionary vector field is

$$
E_{\phi}=A(u)^{\prime} u_{1} \partial_{u}+u_{1}^{2}\left(A(u)^{\prime \prime}-\frac{A(u)^{\prime} A(u)^{\prime \prime \prime}}{A(u)^{\prime \prime}}\right) \partial_{u_{1}} .
$$

Example: 2nd order dynamics for Burgers equation

For case $A(u)=\frac{u^{2}}{2}$ and $c=1$ the above evolutionary equation is

$$
u_{t}=u_{x x}+u u_{x}
$$

with dynamics given by

$$
u_{x x}=0
$$

The corresponding vector field is :

$$
E_{\phi}=u_{1}\left(u \partial_{u}+u_{1} \partial_{u_{1}}\right) .
$$

(

Theorem

In the case $(u)=u$, evolutionary equations

$$
u_{t}=u_{x x}+2 a u u_{x}-b u_{x}
$$

has two dimensional dynamics

$$
u_{x x}+\left(3 a u+c_{1}\right) u_{x}+a^{2} u^{3}+c_{1} a u^{2}+c_{2} u_{0}+c_{3}=0
$$

depending on arbitrary constants $c_{i}, i=1,2,3$.

Example: Burgers equation

The Burgers equation has dynamics

$$
4 u_{x x}+3 u u_{x}+u^{3}-u=0
$$

with solutions

$$
u=\frac{c_{2} \exp \left(\frac{x}{2}\right)-\exp \left(-\frac{x}{2}\right)}{c_{1}+c_{2} \exp \left(\frac{x}{2}\right)+\exp \left(-\frac{x}{2}\right)}
$$

and evolutionary vector field

$$
E_{\phi}=\left(-\frac{u u_{1}}{2}-\frac{u^{3}}{4}+\frac{u}{4}\right) \partial_{u}+\left(\frac{u^{4}}{8}-\frac{u^{2}}{8}-\frac{u_{1}^{2}}{2}+\frac{u_{1}}{4}\right) \partial_{u_{1}}
$$

The fixed point set for this dynamics consist of parabola $u_{1}=\frac{1-u^{2}}{2}$ and the point $(0,0)$:

Third order dynamics

Theorem

For any functions $A(u)$ and $B(u)$ the $R L$ equation

$$
u_{t}=(A(u))_{x}+(B(u))_{x x}
$$

has 3-rd order dynamics

$$
u_{x x}-\frac{u_{x x}^{2}}{u_{x}}+2 \frac{B^{\prime \prime}}{B^{\prime}} u_{x} u_{x x}+\frac{B^{\prime \prime \prime} u_{x}^{3}+A^{\prime \prime} u_{x}^{2}}{B^{\prime}}=0 .
$$

The fixed points of the dynamics are points of the surface:

$$
B^{\prime} u_{2}+A^{\prime} u_{1}+B^{\prime \prime} u_{1}^{2}=0 .
$$

Example: Burgers equation

The Burgers equation has the following 3-rd order dynamics:

$$
u_{x} u_{x x x}-u_{x x}^{2}+u_{x}^{3}=0
$$

with solutions

$$
u=2 \tanh \left(\frac{x+a}{b}\right)+c
$$

and evolutionary vector field

$$
E_{\phi}=\left(\frac{u_{2}}{u_{1}^{2}}+\frac{u}{u_{1}}\right)\left(u_{1}^{2} \partial_{u}+u_{1} u_{2} \partial_{u_{1}}+\left(u_{2}^{2}-u_{1}^{2}\right) \partial_{u_{2}}\right)
$$

RL-integrability

We say that equation (1) has strict dynamics F if the dynamics is also symmetry for (1):

$$
[\phi, F]=0 .
$$

Consider RL equations with

$$
\begin{equation*}
A(u)=\frac{c_{1}}{u}+c_{2} u, \text { and } B(u)=\frac{c_{3}}{u} . \tag{6}
\end{equation*}
$$

Up to rescaling we have essentially four classes:
I

$$
u^{3} u_{t}+u u_{x x}-2 u_{x}^{2}+u u_{x}-u^{3} u_{x}=0
$$

II

$$
u^{3} u_{t}+u u_{x x}-2 u_{x}^{2}+u u_{x}+u^{3} u_{x}=0
$$

III

$$
u^{3} u_{t}+u u_{x x}-2 u_{x}^{2}+u u_{x}=0
$$

IV

$$
u^{3} u_{t}+u u_{x x}-2 u_{x}^{2}+u^{3} u_{x}=0
$$

Theorem

(1) The only RL equations which have strict dynamics up to order 3 has type (6).
(2) These equations has strict dynamics up to order 5 .
(3) These dynamics do commute.
(1) Conjecture: RL equations (6) has strict dynamics in all orders and they commute.

First strict dynamics

-

$$
F_{1}=u_{1},
$$

(2)

$$
F_{2}=-c_{1} \frac{u_{x}}{u^{2}}+c_{2} u_{x}+c_{3} \frac{u u_{x x}-2 u_{x}^{2}}{u^{3}}
$$

(3)

$$
F_{3}=\frac{u_{3}}{u^{3}}-9 \frac{u_{1} u_{2}}{u^{4}}+12 \frac{u_{1}^{3}}{u^{5}}+3 \frac{c_{3}}{c_{2}} \frac{u_{2}}{u^{3}}-9 \frac{c_{3}}{c_{2}} \frac{u_{1}^{2}}{u^{4}}+2 \frac{c_{3}^{2}}{c_{2}^{2}} \frac{u_{1}}{u^{3}}
$$

