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Rapoport -Leas model

The generalized Rapoport-Leas equation
ur = A(u)x + B(U)xx.

describes a displacement of the one dimensional immiscible two phase fluid
in a porous media.

Here u(t, x) is a saturation, and functions A (u),B (u) depends on the
media and are known only experementally.
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@ The nonlinear heat equation:

up = (K (u) tx),
@ The Burgers equation:
U = U Uy + Uy,
@ The original Rapoport-Leas equation (oil-water):
ue + (F (u), +& (K (u) £ (u) J' (u) ux), =0,

where u = u (t, x) — water saturation, f (u) —
fractional flow function, K (u) — the oil relative
permeability, and J (u) — Leverett function. The
parameter ¢ depends on geometry of the poros media
and inverse to the Rapoport-Leas number.
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Let,
ug = @ (u, Uy, Uxx) (1)

be an evolutionary equation.
Naively, by (finite) dynamics we mean (LL) an "finite dimensional
submanifold in a function space" which is invariant wrt the evolutionary

vector field
€p = 2 D* (‘P) auk'
k>0
where 4
D=—
dx

is the total derivation.
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By a finite dynamics for equation (1) we mean an ordinary differential
equation

F(u,ug, ..., ux.x) =0, (2)

for which ¢ (u, u1, u2) is a symmetry, i.e.
[¢, F] = 0mod (DF) , (3)
where (DF) is the differential ideal generated by F (u, uy, ..., ux) and

9. F] =€y (F) —€r (¢)

is the Jacobi bracket.
Compare with the condition

9. F] = 0mod (Dg)

for F to be a symmetry of (1).
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Singularities and stability

Equation (3) could be rewritten in the form
e (F)=a F+bD(F)

for some functions a and b.
Denote by a’ the restriction of a on differential equation (2).

Differential equation (2) is an attractor (repeller) for dynamics (1 ) if
af <0 (af >0, respectively).

Fixed points for dynamics (1 ) are solutions of the ordinary differential
equation

‘P (U, Uy, uxx) =0,
and therefore fixed points for dynamics (2) are solutions of the system
(P (U, Uy, UXX) = 0,
F(uu,...ouxx) = 0.
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Assume that equation (2) is resolved with respect to the higher derivative
ug =1f(u, ..., uk—1). (4)

Then the solution space of this equation could be identified with R¥ by
taking the initial data at a point xp : (u(x0), u1 (x0), ... tk—1 (x0)) -
In this case the dynamics is given by the vector field

Ep=¢" 9, + D¢’ 3, + -+ D1p" 9y, ,,

where ¢ is the restriction of ¢ on differential equation (4).
Compare: Symmetries <—=> Dynamics <= Anzats.
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First order RL-dynamics

First order dynamics for RL-equation has the form

B'(u) y+A(u)— qu+c =0,

where c1, ¢ € R are arbitrary constants.
The dynamics on the initial data is given by vector field
(&}

E(p = _B/—(u) (A(U) — CUu+ Cl) au-

Remark the critical points of the dynamics are:
e B (u) =0, but A(u) — qu+ c1 # 0, points where the dynamics is
not defined (the saturation function grows too fast), and
@ A(u) — qu+c =0, but B (u) # 0, the fixed points of the
dynamics are:
Q repellers, if ¢ (cp—A)B' <0, and
H R/
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Toy example: 1st order dynamics for Burgers equation

For the Burgers equation
Ut = U Uy + Uy

the first order dynamics has the form
02
Ux+7_C2U+C1 =0

with vector field

2
Ep = < —ou+ C1) dy.

2
Solutions (5) has the form

u=1/c? —c tanh

\/C22—C1
—

and its evolution along E is given by

c=0o0t+ q.
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RL dynamics of the second order:

A" (u) # 0.

Theorem

Let A(u) be an arbitrary function with A (u)" # 0, and let ¢ be a
constant. Then the following RL- equations

ur = c(A(W)" v + A ()" 2) + A(u) uy
has dynamics of order 2:
A(u)" e +A ()" v =0.

The corresponding evolutionary vector field is

Ep=A(uv) 110y + uf <A (u)" — /Mqu)(—f)(,,u)) Ay, -
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Example: 2nd order dynamics for Burgers equation

2 . . .
For case A(u) = % and c = 1 the above evolutionary equation is

U = Uxx + Uly,

with dynamics given by

uxx =0,

The corresponding vector field is :

Ep = u1 (u 0y + w1dy,).
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In the case (u) = u, evolutionary equations

Ur = Uy +2a U uy — b uy
has two dimensional dynamics
U + (Bau+c1) ux+ @l +caav’P +ou+c=0

depending on arbitrary constants ¢;, i = 1,2, 3.
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Example: Burgers equation

The Burgers equation has dynamics
Auge + 30 uy +u® —u =0,

with solutions
cexp (5) —exp (=3)
c1 + o exp (g) + exp (—%) '

and evolutionary vector field

The fixed point set for this dynamics consist of parabola u; = 1-v" and
the point (0,0) :
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Third order dynamics

Theorem

For any functions A (u) and B (u) the RL equation

ur = (A(u)), + (B (1))

has 3-rd order dynamics

2 " ", 3 ", .2
u B B"u: + A"u
Uxx — _L;j +* 2_3, Uy Uxx + —XB, = = 0.

The fixed points of the dynamics are points of the surface:

B'u, + Au + B/IU% =0.
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Example: Burgers equation

The Burgers equation has the following 3-rd order dynamics:

2 3 _
Uy Uxxx — Uy, + Uy =0,

u =2 tanh (xz—a> +c,

and evolutionary vector field

with solutions

Ep = <u§ + 51) (1704 + t1tdy, + (U5 — uF) uy) -

Ly

Valentin Lychagin (Institute) Rapoport-Leas dynamics



RL-integrability

We say that equation (1) has strict dynamics F if the dynamics is also
symmetry for (1):
[¢, F] =0.
Consider RL equations with
A(u):ﬂ—kq u, and B(u):g. (6)
u u
Up to rescaling we have essentially four classes:
|

u3ut—|—uuxx—2u)2<—l—u uX—u3 u, =0,

u3ut+uuxx—2u)2<+u ux+u3 u, =0,
i

uaut—i—u uXX—2u)2(+qu=O,

u3ut+u uXX—2u§+ o> u, =20
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@ The only RL equations which have strict dynamics up to order 3 has
type (6).

@ These equations has strict dynamics up to order 5 .

© These dynamics do commute.

(%)

Conjecture: RL equations (6) has strict dynamics in all orders and
they commute.
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First strict dynamics

o
Fi=u,
o 02
Uy U Uy — 2U
FQZ—C17+CQUX+C373X,
u u
° 2 2
uy un C3 Uy cGu Cy Uy
F3:—3—9—+12 + =35 -9==+23—
u u* Cu CUu csu
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