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Weyl structure

Weyl structure on M3 is the pair ([g],D) consisting of a conformal
structure and a linear connection preserving it (we allow any
signature, but mostly think of Lorentzian g). Then the condition on
D writes via 1-form ω

Dg = ω ⊗ g.

A choice of ω is equivalent to a choice of D.

Indeed, denoting by ∇ the Levi-Civita connection, we have
D = ∇+ ρ(ω), 2ρ(ω)(X,Y ) = ω(X)Y + ω(Y )X − g(X,Y )ω♯.
In coordinates Div

j = ∇iv
j + γjikv

k, where

γjik = 1
2(ωkδ

j
i + ωiδ

j
k − ωjgik) (raising is done by g).

Under the change g 7→ λg the form changes so: ω 7→ ω + d log λ.
We encode Weyl structures as pairs (g, ω) mod the above gauge.
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Einstein-Weyl equation

For the general linear connection D, its Ricci tensor RicD needs not
be symmetric. Its skew-symmetric part Ricalt

D
is proportional to dω.

The symmetric part Ricsym
D

leads to Einstein-Weyl equation

Ricsym
D

= Λ g.

Here Λ is a function on M . The pair ([g],D) is called an
Einstein-Weyl structure if the above equation is satisfied.

In particular, for ω = 0 the connection D is Levi-Civita, and the
above is just the Einstein equation. Thus Einstein-Weyl structures
are rich generalizations of the Einstein structures. In particular, in
3D all Einstein manifolds are the spaces of constant curvature. But
S1 × S2 = (R3 \ 0)/Z has a flat Einstein-Weyl structure.

The main goal of this talk is to relate EW structures to integrable
systems and to exhibit a way to produce lots of new examples.
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Discussion

(1) EW structures are generalizations of Einstein metrics, they are
more plentiful, in particular they open up dimension 3 for
relativistic applications. Also they generalize locally
conformally Einstein manifolds.

(2) The EW is an invariant property of conformal structures,
which are more flexible than metric structures.
For instance, it is easier to exhibit EW structures with a
symmetry, easier to make deformations.

(3) EW structures in 3D are obtained as reductions of:

hypercomplex 4D manifolds with triholomorphic vector fields,
4D (anti-)selfdual manifolds (ASD) with conformal symmetry.
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EW and ODEs

Cartan related EW structures to the geometry of 3rd order ODEs
w.r.t. point transformations

y′′′ = F (x, y, y′, y′′).

Denoting p = y′, q = y′′ we have the following (relative) differential
invariants (D = ∂x + p∂y + q∂p + F∂q is the total derivative):

W = 1
6D

2Fq −
1
3FqDFq −

1
2DFp +

2
27F

3
q + 1

3FqFp + Fy

C = (13DFq −
1
9F

2
q − Fp)Fqq +

2
3FqFqp − 2Fqy + Fpp + 2Wq

(Wünschmann and Cartan invariants).

Provided W = 0, C = 0 the solution space S ≃ R
3(y, p, q) of the

ODE carries EW geometry with the conformal structure

g = 2 dy dq − 2
3Fq dy dp+ (13DFq −

2
9F

2
q − Fp) dy

2 − dp2

and the Weyl potential

ω = 2
3(Fqp −DFqq) dy + 2

3Fqqdp.
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Examples

For the trivial ODE y′′′ = 0 the EW structure is flat: ω = 0,
g = dy2 + dp2 + dq2. Question: how many 1-forms (connections
D) correspond to a particular g, making the pair (g, ω) EW?
Answer: at most 4D family; in this case g is conformally flat. For
the Euclidean g, the complete solution is
ω = 2d log |(x− x0)

2 + (y − y0)
2 + (z − z0)

2 +A| (similar for the
Lorenzian signature). As ω is closed, it can be gauge transformed
to zero. Then D is the Levi-Civita connection of a constant
curvature metric (Eastwood-Tod).

For the point submaximal symmetric ODE y′′′ = 3(y′′)2

2y′ the
conformal metric is

g = 2dy(dq − q
p
dp)− dp2.

The covector ω is exact, so again the corresponding EW structures
are conformal rescalings of the constant curvature metrics.
For general EW structure the map (g, ω) 7→ g is one-to-one.

Boris Kruglikov (Tromsø, Norway) Integrability and Einstein-Weyl geometry in 3D



EW and PDEs

It was also known that examples of EW structures can come from
solutions of integrable PDEs.

(1) The metric g = 4dxdt− dy2 + 4udt2 and the covector
ω = −4uxdt form EW structure provided u = u(t, x, y)
satisfies the dKP equation (Dunajski, Mason, Tod)

uxt − (uux)x − uyy = 0

(2) The metric g = dx2 + dy2 − e−udt2 and the covector
ω = utdt− uxdx− uydy form EW structure provided
u = u(t, x, y) satisfies the Boyer-Finley equation (Ward,
LeBrun)

uxx + uyy = (eu)tt

(3) Calderbank found Einstein-Weyl structures from solutions of
the gauge field equations with the gauge group SDiff(2)
modelled on Riccati spaces in the class of PDEs related
to the generalized Nahm equation.
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Dispersionless PDEs

Consider the quasi-linear system of PDEs

A(u)ux +B(u)uy + C(u)ut = 0, (†)

where u = (u1, . . . , um)t is an m-component vector and A,B,C
are l ×m matrices. We assume the system involutive, with the
general solution depending on 2 functions of 1 variable.

Systems of type (†) will be referred to as 3D dispersionless PDEs.
Typically, they arise as dispersionless limits of integrable soliton
equations: The canonical example is the KP equation:

ut − uux + ǫ2uxxx − wy = 0, wx = uy,

which assumes the form (†) in the limit ǫ → 0.

Notice that (†) is translation invariant, which is the standard
requirement for dispersionless PDEs (another approach: scaling
limit in independent vars).
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Integrability by the method of hydrodynamic reductions

As proposed by Ferapontov and Khusnutdinova, the method of
hydrodynamic reductions consists of seeking N -phase solutions

u = u(R1, . . . , RN ).

The phases (Riemann invariants) Ri(x, y, t) are required to satisfy
a pair of commuting equations

Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x,

Compatibility of this system writes (commutativity conditions):

∂jµ
i

µj − µi
=

∂jλ
i

λj − λi
.

Definition

A quasiliner system is called integrable if, for any N , it possesses
infinitely many N -component reductions parametrized by N
arbitrary functions of 1 variable (N = 3 is sufficient).
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Example of dKP

Let’s rewrite the dKP equation (ut − uux)x = uyy in the first order
(hydrodynamic) form:

ut − uux = wy, uy = wx.

N -phase solutions are obtained by u = u(R1, . . . , RN ),
w = w(R1, . . . , RN ), where

Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x.

Then
∂iw = µi∂iu, λi = u+ (µi)2.

Functions u(R), µi(R) satisfy the Gibbons-Tsarev equations:

∂jµ
i =

∂ju

µj − µi
, ∂i∂ju =

2∂iu∂ju

(µj − µi)2
.

This system is involutive and its solutions depend on N functions
of 1 variable.
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Formal linearization

Given a PDE
F (xi, u, uxi , uxixj , . . . ) = 0,

its formal linearization ℓF results upon setting u → u+ ǫv, and
keeping terms of the order ǫ. This leads to a linear PDE for v,

ℓF (v) =
d

dǫ

∣

∣

∣

∣

ǫ=0

F (u+ ǫv) = 0,

In coordinates we have:

ℓF = Fu + Fu
xi
Dxi + Fu

xixj
DxiDxj + . . . .

Example: Linearization of the dKP equation,
uxt − (uux)x − uyy = 0, reads as vxt − (uv)xx − vyy = 0.
In the latter linear PDE u is the background solution.
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Applications of formal linearization

This operator arises in a variety of applications:

Stability analysis

Symmetries, conservation laws, coverings (= Lax pairs =
integrable extensions)

Contact invariants of ODEs, generalized Laplace invariants,
Darboux integrable equations

Integrability of ODEs can be seen from the monodromy group
of linearized equations

Main question.
Can one read the integrability (or linearizability) of a given
PDE off the geometry of its formal linearization?
Yes, for broad classes of 3D dispersionless second order PDEs.
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Types I-IV of PDEs studied:

I. Equations possessing the ‘central quadric ansatz’:

(a(u))xx+(b(u))yy+(c(u))tt+2(p(u))xy+2(q(u))xt+2(r(u))yt = 0.

Equivalence group: GL(3)×Diff(R) : R3(x, y, t)× R
1(u) 	.

II. Quasilinear wave equations:

f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0,

fij = fij(ux, uy, ut). Equivalence group: GL(4) : R4(x, y, t, u) 	.

III. Hirota-type equations:

F (uxx, uxy, uyy, uxt, uyt, utt) = 0.

Equivalence group: Sp(6) : T ∗
R
3(x, y, t, ux, uy, ut) 	.

IV. Two-component systems of hydrodynamic type:

ut = A(u)ux +B(u)uy, u = (u1, u2)
T .

Equiv. group GL(3)×Diff(R2) : R3(x, y, t)× R
2(u1, u2) 	.
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Canonical conformal structure

For the equations of the considered type the linearized equation

ℓF (v) = gijvij + f ivi + c v = 0

is the second order PDE linear in v. The matrix of higher
derivatives represents a symmetric bi-vector gij = gij(u)
(depending on the 2-jet j2u of the solution u) defined up to
multiplication by a function.
Thus, provided this matrix is non-degenerate, its inverse
(gij) = (gij)−1 determines a canonical conformal metric structure

g = gij dx
i dxj ,

depending on a finite jet of the solution (this encodes the symbol of
the equation = dispersion relation). We say that there is a
canonical conformal structure on every solution.
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A remarkable formula for the Weyl potential

Given a conformal structure g = gij(u)dx
idxj let us introduce the

covector ω = ωsdx
s by the universal formula

ωs = 2gsjDxk(gjk) +Dxs(ln det gij).

To interpret this formula, note that the covector ω is given by the
identity

gijvij = ∇i∇iv −
1
2ω

i∇iv,

where ∇ is the Levi-Civita connection. Equivalently, the contracted
Christoffel symbols Γi = gilg

jkΓl
jk = 1

2g
jk(∂jgik + ∂kgij − ∂igjk)

equal to
Γi = −gij∂kg

jk − 1
2∂i log |det(gjk)|,

and so (in 3D only!) we relate ωi = −2Γi.

Due to dispersionless setup, the formula for ω is not contact
invariant, but it is invariant w.r.t. equivalence transformations.
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Main results (E. Ferapontov & BK)

Theorem

A second order PDE is linearizable (by a transformation from the
natural equivalence group) if and only if the conformal structure g
is conformally flat on every solution (has vanishing Cotton tensor).

Theorem

A second order PDE is integrable by the method of hydrodynamic
reductions if and only if, on every solution, the conformal structure
g satisfies the Einstein-Weyl equations, with the covector
ω = ωsdx

s given by the universal formula.

According to a theorem of E. Cartan, the triple (D, g, ω) is EW iff
there exists a two-parameter family of g-null surfaces that are
totally geodesic with respect to D. For our classes of integrable
PDEs, these totally geodesic null surfaces are provided by the
corresponding dispersionless Lax pair.
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Lax pairs

Integrability of the equations of types I-IV above is equivalent to
existence of a dispersionless Lax pair

St = f(Sx, ux, uy, ut), Sy = g(Sx, ux, uy, ut). (♭)

This means that the compatibility condition Sty = Syt is equivalent
to the considered PDE. Lax pairs of this form arise in dispersionless
limits of solitonic Lax pairs (Zakharov).

Differentiate (♭) by x and set Sx = λ, ux = a, uy = b, ut = c:

λt = fλλx+faax+fbbx+fccx, λy = gλλx+gaax+gbbx+gccx. (♯)

The vector fields in the extended space R
4(x, y, t, λ)

X =
∂

∂t
− fλ

∂

∂x
+ (faax + fbbx + fccx)

∂

∂λ
,

Y =
∂

∂y
− gλ

∂

∂x
+ (gaax + gbbx + gccx)

∂

∂λ
,

commute iff the compatibility λty = λyt of (♯) holds.
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Geometric interpretation à la Twistor theory

Consider the cotangent bundle Z6 = T ∗
R
3(x, y, t, Sx, Sy, St) of the

soluton u = u(t, x, y). Equations (♭) specify a submanifold
M4 ⊂ Z6 parametrized by x, y, t, λ. The compatibility of (♭) means
this submanifold is coisotropic and for the symplectic form
ω = dSx ∧ dx+ dSy ∧ dy + dSt ∧ dt we have:

Ker(Ω|M4) = 〈X,Y 〉.

This distribution is tangent to the hypersurface λ = λ(x, y, t) in
M4.

The two-parameter family of integral leaves of the distribution
〈X,Y 〉 projects to the space R

3(x, y, z) to a 2-parameter family of
null totally geodesic surfaces of the Weyl connection D.
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Example of dKP

As an illustration let us consider the dKP equation,

uxt − (uux)x − uyy = 0.

The corresponding EW structure is as indicated above:
g = 4dxdt− dy2 + 4udt2, ω = −4uxdt.

The dispersionless Lax pair is given by vector fields

X = ∂y − λ∂x + ux∂λ, Y = ∂t − (λ2 + u)∂x + (uxλ+ uy)∂λ,

such that the commutativity [X,Y ] = 0 is equivalent to dKP.

Remark

As a combination of results of Godlinsky-Nurowski, Eastwood-Tod
and that of ours, we can conclude that the EW structures coming
from PDEs of types I-IV, which are non-linearizable and
non-equivalent to dKP have irreducible holonomy.
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Another example

The integrable Lagrangian density uxuyut was obtained in the work
of Ferapontov, Khusnutdinova and Tsarev. The corresponding
Euler-Lagrange equation

uxuyt + uyuxt + utuxy = 0.

is integrable by the method of hydrodynamic reductions.

Conformal structure:
g = (uxdx+ uydy + utdt)

2 − 2u2xdx
2 − 2u2ydy

2 − 2u2t dt
2.

Covector: ω = −4
uxuyt

uyut
dx− 4

uyutx

utux
dy − 4

utuxy

uxuy
dt.

The pair (g, ω) determines the connection D such that the triple
(D, g, ω) satisfies the Einstein-Weyl condition.
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Yet another example

The following equation appeared in the work of Pavlov in the
classification of integrable hydrodynamic chains:

utt =
uxy
uxt

+
1

6
η(uxx)u

2
xt.

Integrability condition = Chazy equation η′′′ + 2ηη′′ = 3(η′)2.

Conformal structure:
g = 4uxtdxdy −

(

2
3η

′u4xt + s2
)

dy2 + 2sdydt− dt2, here
s = 1

3ηu
2
xt −

uxy

uxt
.

Covector ω equals:

[

(23 utxη + 4uxyu
−2
tx )uttx + (29 u

2
txη

2 + 8
3 u

2
txη

′ − u2xyu
−4
tx − 1

3 uxyu
−1
tx η)utxx

+(19 u
3
txη η

′ + 2
3 u

3
txη

′′ − 1
3 uxyη

′)uxxx + (uxyu
−3
tx − 1

3 η)uxxy − 2u−1
tx utxy

]

dy

−
[

(uxyu
−3
tx + 2

3η)utxx +
1
3η

′ utxuxxx − u−2
t,xuxxy − 2u−1

tx uttx
]

dt.

This structure is EW iff η solves the Chazy equation.
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Explicit EW system (M. Dunajski, E. Ferapontov, BK)

According to a theorem of Hitchin, EW equations, considered as a
system of PDEs on (g, ω) are integrable.

We construct the explicit Lax pair for EW equations:

g = a2dt2 − dx2 + b2dy2, ω = ω1dx+ ω2dy + ω3dt

is Einstein-Weyl iff

ayy
ab2

+ bxx
b

+ btt
a2b

= axbx
ab

+
ayby
ab3

+ atbt
a3b

+ 1
2a

(

ω3

a

)

t
+

ω2

3

4a2
+ a

2

(

ω1

a

)

x
+

ω2

1

4 +
ω2ay
2ab2

ayy
ab2

+ axx
a

+ btt
a2b

= axbx
ab

+
ayby
ab3

+ atbt
a3b

+ 1
2b

(

ω2

b

)

y
+

ω2

2

b2
+ b

2

(

ω1

b

)

x
+

ω2

1

4 + ω3bt
2a2b

4
axy
a

= (ω2)x + (ω1)y + ω1ω2 + 4
aybx
ab

− 2ω2
bx
b

4 bxt
b

= (ω3)x + (ω1)t + ω3ω1 + 4axbt
ab

− 2ω3
ax
a

(ω3)y + (ω2)t + ω3ω2 − 2ω3
ay
a
− 2ω2

bt
b
= 0.
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Lax pairs for EW (M. Dunajski, E. Ferapontov, BK)

This 5x5 system possesses the Lax pair [X,Y ] = 0

X = ∂t − a cos λ ∂x +m ∂λ, Y = ∂y − b sinλ ∂x + n ∂λ,

where λ is the spectral parameter and

m = −ω2a
2b sin2 λ− ω3

2 sinλ cos λ+ 1
2 sinλ(aω1 − 2ax) +

ay
b
,

n = ω3b
2a cos2 λ+ ω2

2 sinλ cos λ− 1
2 cos λ(bω1 − 2bx)−

bt
a
.

Moreover the system for (g, ω) is hereditary: its symbol carries the
quadric (conformal bi-vector), the inverse to which represents g.

Remark: It was an open interest if the Manakov-Santini system
represents all the solutions of EW, but apparently it does not.
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Integrability in 4D and self-duality

In 4D PDEs of Monge-Ampère type are linearizable iff the
corresponding conformal structure is flat on every solution.

Integrable equations of Monge-Ampère type in 4D have the
following normal forms (Doubrov-Ferapontov):

u11 − u22 − u33 − u44 = 0 (linear wave equation)

u13 + u24 + u11u22 − u212 = 0 (second heavenly equation)

u13 = u12u44 − u14u24 (modified heavenly equation)

u13u24 − u14u23 = 1 (first heavenly equation)

u11 + u22 + u13u24 − u14u23 = 0 (Husain equation)

u12u34 − βu13u24 + (β − 1)u14u23 = 0 (general heavenly).

Their conformal structures are self-dual on every solution.

Conjecture: A 2nd order dispersionless PDE in 4D is integrable iff
the corresponding conformal structure is self-dual on every solution.
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Lax pairs for Self-Duality (M. Dunajski, E. Ferapontov, BK)

According to a theorem of Penrose, the Self-Duality Equations (for
metrics) are integrable. Moreover, EW equations are obtained as
reductions of the self-duality equations.
Let us give an explicit Lax pair for these PDE.

In Plebanski-like coordinates the conformal metric is

g = dwdx + dzdy + pdw2 + 2qdwdz + rdz2,

where p, q, r are functions of all four variables (x, y, z, w). The
self-duality conditions are:

pxx + 2qxy + ryy = 0, mx + ny = 0,
nw − pnx − qny + (px + qy)n = mz − qmx − rmy + (qx + ry)m,

where

m = pz−qw+pqx−qpx+qqy−rpy, n = qz−rw+qry−rqy+prx−qqx.
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... continued (and concluded)

The Lax pair [X,Y ] = 0 with spectral parameter λ is:

X = ∂w − p∂x − (q − λ)∂y + [m− λ(px + qy)]∂λ,

Y = ∂z − (q + λ)∂x − r∂y + [n− λ(qx + ry)]∂λ.

Projecting integral surfaces of the distribution spanned by X and Y
from the extended space R

5(x, y, z, w, λ) down to the space of the
independent variables R

4(x, y, z, w), we obtain a 3-parameter
family of null surfaces of the corresponding conformal structure g.

This Lax representation of Self-Duality equation also is hereditary:
the symbol of the above 3x3 system is equal to Q3, where
Q = p ∂2

x + 2q ∂x∂y + r ∂2
y − ∂x∂w − ∂y∂z is the conformal

bivector. The inverse conformal metric Q−1 coincides with g.
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