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Open Problem!
I Consider a (pseudo-)Riemannian manifold (M,g).
I ∇a — Levi-Civita connection; Rabcd — Riemann tensor of ∇a.
I K [v ]ab = ∇avb +∇bva — Killing operator.
I The Killing equation K [v ]ab = 0 is an over-determined equation of finite

type.
I Given g, what is the full compatibility complex of K [v ]ab = 0?

T ∗M S2T ∗M · · · · · ·K ? ?

I Def: g′ is a compatibility operator for g if e ◦ g = 0 =⇒ e = e′ ◦ g′.

e ◦ g = 0
• • •

•

g g′

ee′◦g=
e′

g′ ◦ g = 0

I Complete answer known (to me!) only for constant curvature (Calabi,
1961) and locally symmetric (Gasqui-Goldschmidt, 1983) cases.
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Motivation from Gauge Theories

I In physics, gauge theories are variational PDEs that have special,
large symmetry groups locally parametrized by arbitrary functions.

I The degrees of freedom that are affected by gauge symmetry
transformations are considered unphysical. Thus, the relevant
properties of the PDE are those invariant under gauge
symmetries. This gives rise to a lot of interesting geometry.

I While non-linear cases are the most important, it is already
interesting and important to study linear gauge theories.

I Infinitesimal gauge symmetries (gauge generators) are given by
differential operators. As overdetermined equations, gauge
generators give rise to compatibility complexes.
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Examples

I Maxwell:
I ∂a∂[aAb] = 0
I Ab — 1-form on flat space
I Ab = ∂bφ — gauge generator

I Linearized Yang-Mills (YM):
I DaD[aAb] + 1

2 [Aa,Fab] = 0
I Ab — Lie algebra valued 1-form; Da — Lie algebra valued

connection; Fab — curvature of Da
I Ab = Dbφ — gauge generator

I Linearized General Relativity (GR):
I ∇a∇ahcd − 2Rc

ab
dhab − 2∇(c∇ah̄d)a = 0

I hcd — symmetric 2-tensor; ∇a — Levi-Civita connection; Rabcd —
Riemann curvature of ∇a; h̄cd = hcd − 2

n (tr h)gcd — trace reversal
I hcd = K [v ]cd = ∇cvd +∇dvc — gauge generator

I Others similar to Maxwell or YM: Chern-Simons, Maxwell p-forms,
. . .
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Structure of a Gauge Theory
I F → M — field (vector) bundle over a (spacetime) manifold M,

dim M = n; F̃ ∗ := F ∗ ⊗ ΛnM — densitized dual bundle.
I Equations of motion (EOM): e : Γ(F )→ Γ(F̃ ∗) — a self-adjoint

linear differential operator, e∗ = e.
I Gauge generator: g : Γ(P)→ Γ(F ) — linear operator satisfying

e ◦ g = 0; P → M — vector bundle of gauge parameters.
I Technical point: g has to be ‘universal,’ meaning that any g′

satisfying e ◦ g′ = 0 must factor through g (g′ = g ◦ q).
I Gauge symmetries are locally parametrized by arbitrary functions:

for an arbitrary section ε : M → P, φ = g[ε] is a solution of
e[φ] = 0, since e[g[ε]] = e ◦ g[ε] = 0.

I Noether’s second theorem — a self-adjoint complex:

P F F̃ ∗ P̃∗
g e g∗

Far from being exact!
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Gauge Fixing
I The existence of a non-trivial gauge generator, an operator g such

that e ◦ g = 0, implies that the principal symbol of e is degenerate.
Thus, e can be neither elliptic nor hyperbolic⇒ bad analytic
behavior!

I However, we are looking at equivalence classes [φ] = [φ+ g[ε]] of
solutions of e[φ] = 0. Thus, some special representatives of [φ]
may satisfy an analytically better behaved equation.

I We impose a gauge fixing (or subsidiary) condition f [φ] = 0, with
some linear differential operator f : Γ(F )→ Γ(P̃∗). Then, add s ◦ f ,
for some linear differential operator s : Γ(P̃∗)→ Γ(F̃ ∗), to the EOM
to get a PDE with a non-degenerate principal symbol:

h[φ] = e[φ] + s ◦ f [φ] = 0

I The condition f [φ] = 0 must be ‘strong enough.’ It is reasonable to
ask that only those gauge modes φ = g[ε] satisfy h[φ] = 0 that
have parameters satisfying their own principally non-degenerate
equation k [ε] = 0: namely, h[g[ε]] = s[k [ε]] for any ε ∈ Γ(P).
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Extended gauge differential complex

Keep in mind:
I gauge symmetry: e ◦ g = 0
I gauge fixing: h = e + s ◦ f
I principal non-degeneracy: h ◦ g = s ◦ k

This information can be structured into a differential complex:

P F F̃ ∗ P̃∗
g e=e∗ g∗

By self-adjointness, we only need half of it.

Moreover. . .
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Extended gauge differential complex
Keep in mind:

I gauge symmetry: e ◦ g = 0
I gauge fixing: h = e + s ◦ f
I principal non-degeneracy: h ◦ g = s ◦ k

More structure, using compatibility operators:

· · · P F P ′ · · ·

· · · P̃∗ F̃ ∗ P̃ ′∗ · · ·

k

g

f
e

g′

f ′
k ′

s s′

I compatibility operators: g′ ◦ g = 0, s′ ◦ s = 0
I factorization: e ◦ g = 0 =⇒ e = f ′ ◦ g′

I homotopy formula: h = e + s ◦ f = f ′ ◦ g′ + s ◦ f , k = f ◦ g + · · ·
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Compatibility Complexes and Cochain Homotopies
I The resulting Hodge-like structure:

0 P0 P1 · · · Pn 0

0 P̃∗0 P̃∗1 · · · P̃∗n 0

g1

h0

g2

h1
f1

gn

f2
hn

fn
s1 s2 sn

I (P•,g•), (P̃∗• , s•) — compatibility complexes
I (h•) — cochain homotopy
I F = Pi — bundle of fields (for some i)
I P = Pi−1 — bundle of gauge parameters
I P ′ = Pi+1 — bundle of invariant fields
I g = gi — gauge generator
I g′ = gi+1 — gauge invariant combinations
I fi — gauge fixing condition
I e = fi+1 ◦ gi+1 — gauge invariant EOM
I hi = fi+1 ◦ gi+1 + si ◦ fi — gauge fixed EOM

Igor Khavkine (Trento) Compatibility Complexes 20/10/2015 8 / 14



Compatibility Complexes and Cochain Homotopies

I The resulting Hodge-like structure:

0 P0 P1 · · · Pn 0

0 P̃∗0 P̃∗1 · · · P̃∗n 0

g1

h0

g2

h1
f1

gn

f2
hn

fn
s1 s2 sn

I Examples:
I Maxwell (i = 1): de Rham complex, Laplace-Beltrami Laplacians;

g1 = s1 = d — de Rham differential
I Flat linearized YM (i = 1): de Rham complex, twisted by Lie algebra g;

g1 = s1 = D = d + B — flat connection on g-valued functions
I de Sitter linearized GR (i = 1): Calabi complex, with vector,

Lichnerowicz, Penrose, etc. Laplacians; [IK arXiv:1409.7212]

g1 = s1 = K — Killing operator
I Maxwell p-forms (i = p): de Rham complex again
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Cohomology and Sheaves
I Local solutions of g1[ε0] = 0 form a sheaf G on M.
I Under favorable conditions, the differential complex is a soft

(⇒ acyclic) resolution of G :

G P0 P1 · · · Pn 0
g1 g2 gn

(e.g., when g1[ε0] = 0 is a PDE of finite type)
I giving an isomorphism in cohomology H•(M,G ) ∼= H(P•,g•)
I Poinacaré-Serre duality:

H•c (M,G )∗ ∼= Hc(P•,g•)∗ ∼= H(P̃∗• ,g
∗) ∼= Hn−•(M,G ∗),

where we have used the adjoint complex

0 P̃∗0 P̃∗1 · · · P̃∗n G ∗
g∗1 g∗n−1 g∗n

and the sheaf G ∗ that it resolves.
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Applications to Gauge Theories
Starting with g = gi and

· · · P F P ′ · · ·

· · · P̃∗ F̃ ∗ P̃ ′∗ · · ·

k

g

f
h

g′

f ′
k ′

s s′

I G = ker g1 — link to sheaf cohomology
I g′[φ] = gi+1[φ] — gauge invariant field combinations
I
∫

M g′[φ] · ψ =
∫

M φ · g
′∗[ψ], hence gauge invariant functionals are generated

by g′∗ = g∗i+1

I In physics, the solution space ker h (mod im g) has a natural variational
(pre-)symplectic and Poisson structure. The kernels of these bilinear forms
do not exceed the dimensions of

H i
c ⊕ H i

c ⊕ H i+1
c (P•,g•)∗ ∼= Hn−i ⊕ Hn−i ⊕ Hn−i−1(M,G ∗).

These kernels are related to ‘global charges.’ [IK arXiv:1402.1282,1404.1932,1409.7212]

I H•≤i (P•,g•) ∼= H•≤i (M,G ) — rigid higher stage symmetries
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Open Problems
I Given a (pseudo-)Riemannian manifold (M,g), what is the

compatibility complex of the Killing operator
K [v ]ab = ∇avb +∇bva?

I G — sheaf of Killing vectors on (M,g)
I G ∗ — depends on g via the compatibility complex; sheaf of

Killing-Yano (n − 2)-tensors on de Sitter space (constant curvature)
I Schwarzschild, Kerr and FLRW are all important geometries where

the answer is unknown. (to me!)
I Same question for Daφ, when Da is not flat, Fab 6= 0.
I Janet-Riquier and Spencer theories of over-determined PDEs

prove that compatibility complexes exist and do not exceed
n = dim M in length.

I Software packages (Janet, Maple; involution, CoCoALib) compute
compatibility complexes.

I both input and output structure is highly coordinate dependent
I for geometric applications, it is desirable to write all operators as

tensors, rather than giant matrices of coordinate components
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Calabi Complex: Tensorial Formulas

g1[v ]a:b = K [v ]a:b = ∇avb +∇bva

g2[h]ab:cd = (∇∇� h)ab:cd + λ(g � h)ab:cd

=
(
∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac

)
+ λ(gachbd − gbchad − gadhbc + gbdhac)

g3[r ]abc:de = dL[r ]abc:de = 3∇[arbc]:de

= ∇arbc:de +∇brca:de +∇crab:de

g4[b]abcd :ef = dL[b]abcd :ef = 4∇[abbcd ]:ef

= ∇abbcd :ef −∇bbcda:ef −∇cbdab:ef −∇dbabc:ef

gi [b]a1···al :bc = dL[b]a1···al :bc = i∇[a1
ba2···ai ]:bc (i ≥ 3)

va : ha:b : rab:cd : babc:de : . . .
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Discussion

I Compatibility operators of generators of infinitesimal gauge
symmetries naturally give rise to compatibility complexes, which
play a significant role in the structure of variational PDEs with
gauge symmetry.

I These compatibility complexes have cohomologies with important
applications in the geometry of Gauge Theories in physics.

I In practice, gauge generators fit into the compatibility complex of a
PDE of finite type.

I The cohomologies can be linked to the cohomologies of certain
sheaves, and thus computed by algebro-topological methods.

I Understanding these compatibility complexes in various specific
cases remains an open problem.

Thank you for your attention!
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