NONLINEAR Prysics VI
24 June — 2 July 2010, Gallipoli, Italy

Hamiltonian formalism for general PDEs

Paul Kersten
Joseph Krasil’shchik
Alexander Verbovetsky
Raffaele Vitolo (speaker)

25 June 2010



Plan

1. Examples
2. Hamiltonian Operators as Variational Bivectors

3. Examples revisited



Example: KdV

Ut = Upge + OUULy = Dmé(u?’ — ui/Z)
= (Dyge + 4uDy + 2u,)0(u?/2)

Uy =V, VUp =W, Wz = U— 6uv

U 0 -1 0
vl =11 0 —6u|d(uw—12v*/2+2u?)
. 0 6u Dy
U 0 —2u —D; —2v
v | = 2u D, —12u% = 2w | §(—3u?/2 — w/2)
w —D;+2v 12u® +2w  8SuD; + 4uy

xr
S. P. Tsarev, The Hamilton property of stationary and inverse
equations of condensed matter mechanics and mathematical physics,
Math. Notes 46 (1989), 569-573



Example: Camassa-Holm equation
Ut — Utgy — Ulggpy — 2UgUgy + SUUL =0

me+umg +2u,m=0, m—u+uz =0
my = —umy — 2uzm = By §(H1) = By §(Hs)

where )
By = —(mDy + Dym), Hi= 5 /mudm
1

By=D2—-D,, Hy= 2/(u3 + wu?) de.

H1 and Ho are viewed as functionals of m and not of wu,
with u = (1 — D2)~"!m.



Example: Kupershmidt deformation
B. Kupershmidt, KdV6: An integrable system, Phys. Lett. A 372 (2008), 26342639

ut:f(taxauuux)uxxr")

A, Asg are compatible Hamiltonian operators
Hy, Ho, ... is a Magri hierarchy of conserved densities
Dy(H;) =0, A1 6(H;) = A20(H;41).

up = f — Ar(w), Az(w)=0 (1)

The KdV6 equation

(A. Karasu-Kalkanli, A. Karasu, A.Sakovich, S.Sakovich, and

R. Turhan, A new integrable generalization of the Korteweg-de Vries
equation, J. Math. Phys. 49 (2008) 073516, arXiv:0708.3247)

Ut = Uggy + OUUL — Wy,  Wayas + duwy + 2u,w =0

Theorem (Kupershmidt)

Hy, Hy, ... are conserved densities for (1).



Infinite jet space: notation

The jet space J> with coordinates x?, ul,

Di=08,+>. ul.0 i are total derivatives

7,0 ot

E,=3; W0, + > i Di(¢?)d,; + ... is an evolutionary field,

Y= (cpl, ...,™) is a vector function on J*

is the linearization

f= ‘Zg 9, (fi)Dqg

of a vector function f on J*, () = E,(f)

A = ||, (~1)7Doad||, it A =3, ag Dol
the adjoint C-differential operator



Differential equations: notation

Let Fk(mz,uf,) =0,k=1,...,1, be asystem of equations
Relations F' = 0, D,(F') = 0 define its infinite

prolongation £ C J*°

le = Lp|¢ is the linearization of the equation &

E, is a symmetry of £ if E,(F)|e = le(p) =0, Sym(E) = ker l¢
 is its generating function

Vector function R = (R!,..., R") on £ is a conserved current if
S Di(R)=0on¢

Conservation laws of £ are conserved currents mod. trivial ones
Generating function of a conservation law:

Y= (1,...,0m) = A*(1), where Y, D;(R') = A(F) on J>®

Ci(p) =0,  CL(E) C ker £



Analogy

Manifold M Jet J* PDE &
functions functionals conservation laws
vector fields evolutionary vect. fields symmetries
M Joo = Jp°(57) L*(E)
TM T = Jp°(5) L(E)
De Rham complex | Eg" ' — Ey™ ' | B S BV
multivectors variational multiv. variational multiv.
Schouten bracket variational Sch. br. variational Sch. br.

The analogy can be extended to the Liouville one-form
0o € Q(T*M) and the symplectic form wy = dfp.



Differential equations: the model

D(E) = Sym(E&) = the Lie algebra of symmetries of £
A9(E) D CAY(E) D C?AYE) D C3AIE) D

0,n d(lj’n 1n d}’n 2.n d%n 3,n d?n

Ey — By — Ep — By e
O,n—1 1,n—1 2,n—1 n—1
-1 4y 1n—1 4y 2n—1 4 1 dy

E.g),n 1 El,n 1 El n— E3 n—

0,n—2
El

0,0
El

E? =l = space of conservation laws
1,n—1
E;"" = Cosym € = ker £}

BY" = {A| A=A} [{Vis | VP = V)




Differential equations: the cotangent space

T F=0, (¢ (p)=0
L = (F,p) E%‘ = 67—5*
Variational multivectors on £ are conservation laws on 7.

Theorem
A wvariational bivector on £ can be identified with the
equivalence class of operators A on £ that satisfy the condition

leA = A},

with two operators being equivalent if they differ by an operator
of the form 4%

If A is a bivector and £ is written in evolution form then
A* = —A.



Differential equations: the Schouten bracket of bivectors

[A1, A2] (Y1, 42)
= Loy (A2(h2)) — a4, (A2(¥1))
+ Ly, (A1 (12)) — Ly, (A1 (1))
— Ar(B3 (Y1, 12)) — Aa(By (Y1, ¢2)),
where €pA; — A0, = Bi(F,-) on J*,
B (¥1,12) = B (1, ¥2)le.

B} are skew-symmetric and skew-adjoint in each argument.

If £ is in evolution form then B} (¢1,v2) = €, ,, (1)



Differential equations: Poisson bracket

Definition
A variational bivector is called Hamiltonian if [A, A] =0

S1, 89 € CL(E), 11,19 are the generating functions
{51,524 = Eg(y,)(S2)

Definition

The Magri hierarchy on a bihamiltonian equation £ is the
infinite sequence S1, S, ... of conservation laws of £ such that
A1 (i) = Ao (ig).-

Proposition

For Magri hierarchy we have
{8i,Sj}a, = {8i,Sj}ta, = {Ey;, By} =0, where
i = A1(¥i) = A2(Yig1).



Invariance of the cotangent equation

Ji
A
&
J3°

Each two resolutions of the module of Cartan forms CA! are
homotopic. In particular, we consider normal equations, for
which CA! admits resolutions of length 1:

[—‘r
0——C(P1, F) — C(se1, F) —25 Al —— 0

Al el ]
ZF'

0——C(Py, F) —5C(50, F) ——= AL —— 0



Invariance of the cotangent equation

Theorem

Let € be a normal equation. Then:

Eé is homotopically equivalent to E%
=

E};* is homotopically equivalent to 5(25*.

It follows that the cotangent space to € does not depend on the
inclusion of £ into J*°.

We have the change of coordinate formula for bivectors:

A2 = aA1 O/*
Ay =B Ay B



Example: KdV

\_’/

52
eg - Dt D;tzx
1

a=| D, o
Dx:v

0

S1 — S9 = 1

D

Flzut

=

— Uppe — OUU, =0
Uy — VU
Vp — W =0

Wy — Ut + 6uv

D, -1 0
02 = 0 D, -1
Dt +6v 6u D



Example: Camassa-Holm equation

Ut — Utgpy — Ulgpe — 2UgUzy + Uy = 0

A =D, As = —Dy —uDy + uy.

me + umyg + 2u,m = 0,

m— U+ Ug, =0

! Dx 0 ! 0
A= <Dw —- D3 0> Az = <2sz + mg



Example: Kupershmidt deformation
Let £ be a bi-Hamiltonian equation given by F =0
Definition )
The Kupershmidt deformation £ has the form
F + Aj(w) =0, A5(w) =0,

where w = (w!, ... ,w ) are new dependent variables

Theorem )
The Kupershmidt deformation & is bi-Hamiltonian.

Proof.
The following two bivectors define a bi-Hamiltonian structures:

A~1 _ <A1 —A1 ) /12 _ < A2 _A2>
0 5F+A;(w)+A;(w) *£F+A1*(w)+A§(w) 0
O



More examples

» H. Baran and M. Marvan, On integrability of Weingarten
surfaces: a forgotten class, J. Phys. A: Math. Theor. 42
(2009), 404007

Zyy + (1/Z)xx + 2=0
D, 22D gy — 2y Dy + 22 Dy.

» F. Neyzi, Y. Nutku, M.B. Sheftel, Multi-Hamiltonian
structure of Plebanski’s second heavenly equation
arxiv:nlin/0505030

2
UttUgy — Upy + Ugy + Uty = 0

It is Lagrangian, hence the identity operator is a
Hamiltonian bivector. This is rewritten in the above paper
in evolutionary coordinates.



Symbolic computations

Hamiltonian operators, recursion operators, symplectic
operators, etc. can be computed as (generalized or higher)
symmetries or cosymmetries in the cotangent space of the given
PDE.

We use a set of packages for Reduce developed by Kersten et al.
at the Twente University (Holland). This is available at the
Geometry of Differential Equations website

http://gdeq.org/

together with documentation, a tutorial (by R.V.) and
examples. We are currently extending it to work for
non-evolutionary equations.
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Infinite jet space: the model

D(J*) = s = the Lie algebra of evolutionary fields
A9(J®) D CAI(J>®) D C2AI(J>®) D C3NI(JT>®) D - -

d(),n 1 dl,n 9 d2,n d3,n
EO,n 1 E,n 1 E,n 1 ES,n 1
1 1 1 1
0,n—1
El
0,0
El

n is number of x’s

EY™ consists of all “actions” [ L(z?,ud)dz A--- A dz”
By =5, 5 = Homgeo(joo) (32, A"(J®) JCA™(J))
dY"™ is the Euler operator

Ep™ = 0%k (3¢, 52)

A" () =ty = L



Infinite jet space: the cotangent space

B. A. KUPERSHMIDT, Geometry of jet bundles and the
structure of Lagrangian and Hamiltonian formalisms,

Lect. Notes Math. 775, 1980, pp. 162-218

o = Jp (%)

S eV (Tje)=Clx@ @) Sp,d) = (—, )
D2(J>®) = C*V (52, 2) Ay, Ay € D*(J™)
[A1, A2] (41, 2)
= Lay 1 (A2(V2)) = La, py (A2(91))
F Ly (A1(2)) = Lag (A1 (1))

= A1(Chy , (¥1)) = A2(y, 1, (V1))
where EAW = EA(w) - AE¢



