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Classical Hamiltonian formalism

Canonical equations

pi 9q 9= (1)
Configuration manifold K: q¢,...,q".
Infinitely prolonged system (1)
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£ - 1 N D %) O i
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Classical Hamiltonian formalism

Canonical equations

OH i OH
= - g= 1
p 9 7= (1)
Configuration manifold K: q¢,...,q".
Infinitely prolonged system (1)
= OH OH
. 1 N _ .
& t,q° ..., q ,P1,-- -, PN, Dt_at+8_[);aq'_8_C]iapi (2)
Paths through instantaneous states
E=T'KxR o { = pidq" — Hdt € N(&)
q' = f'(t)
o TE 51 (3)
pi = &i(t) o / a*(0)
R fo
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Classical Hamiltonian formalism

Canonical equations

Configuration manifold K: q¢,...,q".

Infinitely prolonged system (1)
oH OH

. 1 N N _ .
& t,q° ..., q ,P1,-- -, PN, Dt_at+a_[);aq'_8_C]iapi (2)
Paths through instantaneous states
E=T*KxR o { = pidg' — Hdt € N(€)
C)a =1(1)
o TE o t1 (3)
pi = &i(t) o / a*(0)
R to

D; — Hamiltonian dynamics < autonomy + the trivial connection on 7.
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Classical Hamiltonian formalism

Canonical equations

Configuration manifold K: q¢,...,q".

Infinitely prolonged system (1)
oH OH

. 1 N N _ .
& t,q° ..., q ,P1,-- -, PN, Dt_at+a_[);aq'_8_C]iapi (2)
Paths through instantaneous states
E=T*KxR o { = pidg' — Hdt € N(€)
C)a =1(1)
o TE o t1 (3)
pi = &i(t) o / a*(0)
R to

D; — Hamiltonian dynamics < autonomy + the trivial connection on 7.
Before the Legendre transformation: L and mg: TK xR - R = /.
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How can one describe the Lagrangian formalism in terms of

the intrinsic geometry of differential equations?

Main idea

The Hamiltonian formalism is a (non-covariant) version of the Lagrangian
one rewritten in terms of the intrinsic geometry of variational equations.
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How can one describe the Lagrangian formalism in terms of

the intrinsic geometry of differential equations?

The Hamiltonian formalism is a (non-covariant) version of the Lagrangian
one rewritten in terms of the intrinsic geometry of variational equations.

Outline

o If £ C J>°(m) and E(L) vanishes on &, then L produces a unique
element of a certain cohomology group of £ (internal Lagrangian).

@ Internal Lagrangians can be varied in a (non-)covariant manner within
classes of paths through properly defined instantaneous states.

@ Instantaneous states are encoded by the lifts of involutive hyperplane
distributions from the base of a differential equation g: &€ — M. In
some cases, it is reasonable to consider such lifts gauge equations.
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How can one describe the Lagrangian formalism in terms of

the intrinsic geometry of differential equations?

The Hamiltonian formalism is a (non-covariant) version of the Lagrangian
one rewritten in terms of the intrinsic geometry of variational equations.

Outline

o If £ C J>°(m) and E(L) vanishes on &, then L produces a unique
element of a certain cohomology group of £ (internal Lagrangian).

@ Internal Lagrangians can be varied in a (non-)covariant manner within
classes of paths through properly defined instantaneous states.

@ Instantaneous states are encoded by the lifts of involutive hyperplane
distributions from the base of a differential equation g: &€ — M. In
some cases, it is reasonable to consider such lifts gauge equations.

An alternative approach: intrinsic Lagrangians (M. Grigoriev).
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Let m: E"™™ — M" be a locally trivial smooth vector bundle. Denote by

e x! ..., x" coordinates in U C M (independent variables),

e ul ..., u™ coordinates along the fibers over U (dependent variables).

In local coordinates, the oo-jet [h]5° of a section h € I'(7) at a point xo € U
is given by partial derivatives of its components. Coordinates on J°°(7):

. . . || i
ST =X 60). ) = G e C0) @
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Let m: E"™™ — M" be a locally trivial smooth vector bundle. Denote by
e x! ..., x" coordinates in U C M (independent variables),
e ul ..., u™ coordinates along the fibers over U (dependent variables).

In local coordinates, the oo-jet [h]5° of a section h € I'(7) at a point xo € U
is given by partial derivatives of its components. Coordinates on J°°(7):

. . . || i
ST =X 60). ) = G e C0) @

The Cartan distribution C on J°°() is spanned by the total derivatives

DXk:8Xk+Ui kau:'l, k=1,...,n (5)

a+x

The Cartan distribution C is a connection (= horizontal distribution) on the
bundle 7o : J*®(7) — M,

Too! [h]% F X0 (6)
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Dual description
the ideal CA*(m) C A*(m) (7)
In local coordinates, a Cartan differential 1-form w € CAl(r) has the form
w = wib 0! = duf, — ”;+xk dx* (8)

Smooth functions on jets: F(m).
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Dual description
the ideal CA*(m) C A*(m) (7)
In local coordinates, a Cartan differential 1-form w € CAl(r) has the form
w = wib 0! = duf, — u;Jer dx* (8)
Smooth functions on jets: F(m).

Let 7 be a locally trivial smooth vector bundle over M, and let F be a
section of 7% (7). The infinite prolongation of {F =0} C J*(7) is

£ : Do(F)=0 (9)

Cartan distribution: on J*°(7w) = on & = connection on Tg = Tsos.

Kostya Druzhkov Internal Lagrangians and gauge systems May 1, 2024 5/ 38



o If £ C J>°(m) and E(L) vanishes on &, then L produces a unique
element of a certain cohomology group of £ (internal Lagrangian).

J

If L is an element of

Ap(m) = F(m) - oo (A" (M) (10)
such that E(L)|¢ = 0, there is a Cartan n-form w; € CA"() that satisfies
Li
d(L+wy)— 0 1u, 05 A dxt AL A dx™ € CPATTY(x), (11)

where C2A\*(7) is the square of CA* (7).
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o If £ C J>°(m) and E(L) vanishes on &, then L produces a unique
element of a certain cohomology group of £ (internal Lagrangian).

J

If L is an element of

Ap(m) = F(m) - oo (A" (M) (10)
such that E(L)|¢ = 0, there is a Cartan n-form w; € CA"() that satisfies
Li
d(L+wy)— 0 1u, 05 A dxt AL A dx™ € CPATTY(x), (11)

where C2A\*(7) is the square of CA* (7).

All restrictions (L + w; )|e play the role of Poincaré-Cartan forms.
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o If £ C J°(m) and E(L) vanishes on &, then L produces a unique
element of a certain cohomology group of £ (internal Lagrangian). J

If L is an element of

Ap(m) = F(m) - oo (A" (M) (10)
such that E(L)|¢ = 0, there is a Cartan n-form w; € CA"() that satisfies
Li
d(L+wy)— 0 1u, 05 A dxt AL A dx™ € CPATTY(x), (11)

where C2A\*(7) is the square of CA* (7).

All restrictions (L 4 wy)|e play the role of Poincaré-Cartan forms. ]

{0 e N"(&): dl € CPA"TL(E)}
d(CA"—1(E)) + C2A"(€)
The cohomology class of L = a unique internal Lagrangian, i.e., element of
{£ e N"(€): dleCPA"TL(E)}
d(A""1(E)) + C2A(€)
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all (L4w¢)|e = the same element of (12)

(13)



For ¢ € I'(m}, (7)), we denote by E, the evolutionary vector field
Ep = Da(#)0y; (14)
The Noether identity: there is w; € CA"(7) such that E,aw; € AP~ (m),

Lo, L= E, B(L) + dn(Epawy) (15)
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For ¢ € I'(m}, (7)), we denote by E, the evolutionary vector field
Ep = Da(#)0y; (14)
The Noether identity: there is w; € CA"(7) such that E,aw; € AP~ (m),

Lo, L= E, B(L) + dn(Epawy) (15)

Internal Lagrangians are cohomology classes of A(E)/C?A(€)

The filtration A(€) D C?A(£) D C3N(E) D C*A(E) D ... leads to the
spectral sequence for the Lagrangian formalism.

Let us recall that the Vinogradov C-spectral sequence is produced by

AE) D CNE) D CPNE) D CPNE) D ... (16)

Any embedding of £ to any co-jet manifold ...

Each internal Lagrangian of £ can be (ambiguously, but globally) extended
to the jet manifold.

Internal Lagrangians = the Noether theorem.
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@ Instantaneous states are encoded by the lifts of involutive hyperplane
distributions from the base of a differential equation 7¢: & — M.

| A\

Definition
A spatial distribution on £ is the lift of an involutive regular distribution of
rank = n — 1 from the base M".

Typical example

M=R": x®=¢txb. . . x"! sonM: Oa, ..., 0w (17)
Con&: Dy, Da, ..., D Son&: Dy, ..., Dy (18)
CALE): 0. =0|e SAY(E): dt, 0. =0 (19)

s defines "simultaneous" ~ reference system (no time though).
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@ Instantaneous states are encoded by the lifts of involutive hyperplane
distributions from the base of a differential equation 7¢: & — M.

| A\

Definition
A spatial distribution on £ is the lift of an involutive regular distribution of
rank = n — 1 from the base M".

v

Typical example

M=R": x®=¢txb. . . x"! sonM: Oa, ..., 0w (17)
Con&: Dy, Da, ..., D Son&: Dy, ..., Dy (18)
CA'(E): Gy = ble SN(E): dt. O, =0ile  (19)

s defines "simultaneous" ~ reference system (no time though).
AE) D SA(E) D S*AE) D S3NE) D ... (20)

Sp C Cp = SKA*(£) D CKA*(E) = morphisms of the spectral sequences.
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Paths through instantaneous states

Integral manifolds of spatial distributions are (local) solutions to the
respective spatial equations. They represent (local) instantaneous states.

Definition

A section o of the bundle ¢ is an S-section if

dox(sx) = So(x) for any x € M. (21)

S-sections encode paths through instantaneous states.
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Paths through instantaneous states

Integral manifolds of spatial distributions are (local) solutions to the
respective spatial equations. They represent (local) instantaneous states.

Definition

A section o of the bundle ¢ is an S-section if

dox(sx) = So(x) for any x € M. (21)

S-sections encode paths through instantaneous states. We are going to
perturb them.

Definition

A mapping v: R x M — £ is a path in S-sections if the mappings

Y(7): x = (7, x) (22)

are S-sections for all 7 € R.

Kostya Druzhkov Internal Lagrangians and gauge systems May 1, 2024 9/ 38



Non-covariant variational principle (6 slides before gauge)

@ Internal Lagrangians can be varied in a non-covariant manner within
classes of paths through properly defined instantaneous states.

Let £ be an internal Lagrangian of £, £ € £.

Definition
An S-section o is an S-stationary point of £ if for any compact oriented
submanifold N7 C M”, the relation

d
dr

o Ay =0 (23)

holds for each path ~ in S-sections such that «(0) = o and all points of
the boundary ON are fixed.
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Non-covariant variational principle (6 slides before gauge)

@ Internal Lagrangians can be varied in a non-covariant manner within
classes of paths through properly defined instantaneous states.

Let £ be an internal Lagrangian of £, £ € £.

Definition

An S-section o is an S-stationary point of £ if for any compact oriented
submanifold N7 C M”, the relation

d
dr

o Ay =0 (23)

holds for each path ~ in S-sections such that «(0) = o and all points of
the boundary ON are fixed.

Let us stress that the choice of a representative has no impact and
all solutions of € are S-stationary points of £.

No time.
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Is time actually important
for the Hamiltonian formalism?
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The Laplace equation

Uyy = —Uxx (24)
E 1 X Y, U, Uy, Uy, U, Uxy s Usoocs - - - (25)
Consider the internal Lagrangian represented by the ¢ = (L + w;)|¢,
u)2< + u}2,
L—i—w,_:—de/\dy—uxﬁo/\dy—i—uyﬁo/\dx. (26)
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The Laplace equation

Uyy = —Uxx (24)
E 1 X Y, U, Uy, Uy, U, Uxy s Usoocs - - - (25)
Consider the internal Lagrangian represented by the ¢ = (L + w;)|¢,
u)% + u}2,
L4+w, =— dx Ady — ux 0o N dy + uy, g A dx. (26)

Suppose S is the lift of the distribution s = ker dy:
S: Dy = Ox + uxOy + txxOuy + tnyOu, + O + Uy Oy, + - (27)
Solutions to the S are given by yp € R and arbitrary functions a(x), b(x),
y=yo, u=a(x), u,=b(x), ux=0xa, uxy =0b, ... (28)
Any S-section ¢ has the form
u="~F(x,y), u,=g(x,y), ux=0x, uy =08, ... (29)
where f, g € C*(R?) can be chosen arbitrarily.
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2 f 2
o () = (w - gf)yf) dx A dy (30)
2
The Euler-Lagrange equations are
8>2<f+8yg:07 g =0,f (31)

All S-stationary points are solutions to Laplace’s equation (and vice versa).

This is not a coincidence.
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2 2
o () = (ggaxf) - gf)yf) dx A dy (30)

The Euler-Lagrange equations are

8)2(f+8yg:0, g =0,f (31)

All S-stationary points are solutions to Laplace’s equation (and vice versa).

This is not a coincidence.

Let L be a horizontal n-form, and let £ be the infinite prolongation of the
Euler-Lagrange equation E(L) = 0. Suppose S is the lift of a nowhere
characteristic involutive hyperplane distribution. Then an S-section o is an
S-stationary point of the corresponding internal Lagrangian if and only if o
is a solution to 7g.

Kostya Druzhkov Internal Lagrangians and gauge systems May 1, 2024 13 / 38



Why gauge?

Let us consider the wave equation
Uy =0 (32)
Suppose s = ker dy (characteristic). Then any S-section o has the form
u="Ff(x,y), ux=0xf, uy=hi(y), uxx =0, uy=h(y), ... (33)

The functions f(x,y), hi(y), h2(y), ... can be chosen arbitrarily. They
satisfy the infinite number of constraints (& the spatial equation)

dehi =0 i=1,2, (34)
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Why gauge?

Let us consider the wave equation
Uy =0 (32)
Suppose s = ker dy (characteristic). Then any S-section o has the form
u="Ff(x,y), ux=0xf, uy=hi(y), uxx =0, uy=h(y), ... (33)

The functions f(x,y), hi(y), h2(y), ... can be chosen arbitrarily. They
satisfy the infinite number of constraints (& the spatial equation)

Oxchi =0 i=1,2, (34)
What about the infinite number of the relations
Oyf =hi, Oyhi=hi1? (35)

No internal Lagrangians can give an infinite number of equations. I

So, for any £, S-stationary points 2 solutions. Apparently, instantaneous

states here are not just solutions to the S.
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Basic structures on &£

A me-vertical vector field X on & is a symmetry of 7g if
Lx CN*(E) C CN*(E) (36)
A variational p-form is an element of the vector space

gpnigy - A ECONTINE) | du € CON(E))
1 T d(CPAPTI2(E)) + CPHIAPTIL(E)

A presymplectic structure of £ is an element of ker dlz’"_l, where
2 B E) £ )

An internal Lagrangian of £ generates a unique presymplectic structure.

(37)

Kostya Druzhkov Internal Lagrangians and gauge systems May 1, 2024 15 / 38



Basic structures on &£

A me-vertical vector field X on & is a symmetry of 7g if
Lx CN*(E) C CN*(E) (36)
A variational p-form is an element of the vector space

gpnigy - A ECONTINE) | du € CON(E))
1 T d(CPAPTI2(E)) + CPHIAPTIL(E)

(37)

A presymplectic structure of £ is an element of ker d12’"_1, where
B R B (3)
An internal Lagrangian of £ generates a unique presymplectic structure.
All symmetries of £ define morphisms of the form
Xo: ED"HE) = EP"THE) (39)

Gauge symmetries of Lagrangian equations can be defined internally.
Gauge symmetries: X w = 0, where w 3 d/, while £ < the Lagrangian.
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@ In some cases, it is reasonable to consider such lifts gauge equations. J

A me-vertical vector field X on & is an S-symmetry if
Lx SN*(E) C SN (E) (40)
Sp C Cp = SKA*(£) D CKA*(E) = morphisms of the spectral sequences.

The morphisms are given by C — S. For example, a variational p-form

w + d(CPAPT=2(£)) 4+ CPHIAPTIL(E) (41)
gives rise to the S-variational p-form

w + d(SPAPTI=2(£)) 4 SPTIAPTA=L(£) | (42)

which is not a variational p-form for the (£,S). (Top horizontal degree)
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@ In some cases, it is reasonable to consider such lifts gauge equations. J

A me-vertical vector field X on & is an S-symmetry if
Lx SN*(E) C SN (E) (40)
Sp C Cp = SKA*(£) D CKA*(E) = morphisms of the spectral sequences.

The morphisms are given by C — S. For example, a variational p-form

w + d(CPAPT=2(£)) 4+ CPHIAPTIL(E) (41)
gives rise to the S-variational p-form

w + d(SPAPTI=2(£)) 4 SPTIAPTA=L(£) | (42)
which is not a variational p-form for the (£,S). (Top horizontal degree)

Lagrangian L = internal Lagrangian £ = presymplectic structure w =
S-presymplectic structure ws = (£, S)-gauge symmetries: X_ws = 0.
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The Laplace equation again

Uyy = —Uxx s = ker dy S: D, (43)
The presymplectic structure is represented by the form d?,
dl=—0,ANOgAdy+0, Ny Adx. (44)
0o = du — uxdx — uydy, Ox = duyx — uxxdx — Uy, dy,
_y = duy, — Uy dx + Uxdy. Since —0, A Oy A dy € S3A3(E), the form
w=0,Af A dx (45)

represents the same S-presymplectic structure as d/.
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The Laplace equation again
Uyy = —Uxx s = ker dy S: D, (43)

The presymplectic structure is represented by the form d?,

dl=—0,ANOgAdy+0, Ny Adx. (44)

0o = du — uydx — uydy, 0, = duy — Usdx — Uy dy,
_y = duy, — Uy dx + Uxdy. Since —0, A Oy A dy € S3A3(E), the form
w=0,Af A dx (45)

represents the same S-presymplectic structure as d/.

Any S-symmetry has the form

X = 00y + XOu, + Dy (¢)0y, + Dy (x)Ouy, + - - (46)

@ and x are arbitrary functions on £.
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No (€, S)-gauge symmetries for the Laplace equation

Xow=x0o Ndx — @0, A dx (47)
Denote uy, by v. The spatial equation: the infinite prolongation of the ODE
y«=0, 0=0, 0=0 for (y,u,v) (48)

Any S-variational 1-form is represented by

ady Adx + b0y Adx +cl, A dx (49)
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No (€, S)-gauge symmetries for the Laplace equation

Xow=x0o Ndx — @0, A dx (47)
Denote uy, by v. The spatial equation: the infinite prolongation of the ODE
y«=0, 0=0, 0=0 for (y,u,v) (48)
Any S-variational 1-form is represented by
ady Adx + b0y Adx +cl, A dx (49)
Linearization of an equation F =0: E,(F) =Ir(p) = lg¢ =If|e. Then
D« 0 0 ~Dx 0 0
Is=10 00 5= 0 00 (50)
0 00 0 0 0

S-variational 1-form (49) is trivial iff (a; b;c)T € im [% (< k-line theorem).

Triviality = b = ¢ = 0. Then (47) defines the trivial S-variational 1-form
iff o = x = 0. No (£,S)-gauge symmetries.
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The wave equation again
S: Dy

ny:O7

xU Uy, - Uy _
€:—%dx/\dy—?y90/\dy—?dx/\00,

Any vector field of the form

00y + 9018uy + @2 auyy + @3 8uyyy

Yo=¢
is an (€, S)-gauge symmetry, where g, ¢1,
Uy, Uyy, ... Indeed, d? represents the same S-presymplectic structure as
1. -
w= 79X/\00/\dx,
0o = du — uydx — uydy, 0, = duy — Uy dx
Y, aw = % dx Ay € d(% 7 ) + S2A2(€)

Internal Lagrangians and gauge systems

Kostya Druzhkov

0o = du — uydx — uydy .

(51)

(52)

(53)

May 1, 2024

are arbitrary functions of y,

(54)

(55)
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The wave equation again
S: Dy

ny:O7

xU Uy, - Uy _
€:—%dx/\dy—?y90/\dy—?dx/\00,

Any vector field of the form
Ygo = ¥o Ou + 9018uy + @2 auyy

is an (£, S)-gauge symmetry, where ©g, ¢1,
Indeed, d/ represents the same S-presymplectic structure as

(51)

0o = du — uydx — uydy .
(52)

(53)

+¥3 8“,vy,v

are arbitrary functions of y,

(54)

Uy, Uy, ...
1.
w= §9x/\90/\dX,
0o = du — uxdx — u,dy, 0, = duy — Uxdx.
Ywa:@dx/\éxedCOOQ)+82A2(5) (55)
2 2
= =2 .
= Dy(goo), 02 =D, (o), ..., then Y, is a
May 1, 2024 19 / 38

Let us note that if ¢1

symmetry of the wave equation
Internal Lagrangians and gauge systems
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Spatial-gauge Cauchy problems on the characteristics

An S-section o

u=~f(x,y), ux = Oxf, uy = hi(y), U = 2F, vy, = ha(y), ... (56)
is an S-stationary point of £ if and only if
BDyf =0 (57)

Any S-stationary point o can be transformed into a solution of the wave
equation using the transformation ®!, where ®7 denotes the flow of the
(£, S)-gauge symmetry Y, = ©o Oy + 104, + 02 0y, + 030y, + ... for

wo =10, 1 :—h1+8yf, ©2 :—h2+8}2,f, g03:—h3+8§f, (58)
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Spatial-gauge Cauchy problems on the characteristics

An S-section o

u=~f(x,y), ux = Oxf, uy = hi(y), U = 2F, vy, = ha(y), ... (56)
is an S-stationary point of £ if and only if
O0x0yf =0 (57)

Any S-stationary point o can be transformed into a solution of the wave
equation using the transformation ®!, where ®7 denotes the flow of the
(£, S)-gauge symmetry Y, = ©o Oy + 104, + 02 0y, + 030y, + ... for

Uyy

wo =10, 1 :—h1+8yf, ©2 :—h2+8}2,f, g03:—h3+8§f, (58)

Solutions to the spatial equation have the form
y=yo, u=a(x), ux=0xa, u, =c, uxxzaﬁa, Uy =C, ... (59)

Initial data (initial state): a(x) modulo +consty, c; modulo +consty, ...
The solution is a unique (£, S)-gauge equivalence class of S-sections.
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Non-covariant action and spatial-gauge equivalence

If an (£, S)-gauge symmetry generates a global flow

the corresponding transformations play the role of spatial-gauge ones. For
a spatial equation S, the set of all such transformations generates a group
(group operation is composition), which we call (£,S)-gauge group.
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Non-covariant action and spatial-gauge equivalence

If an (£, S)-gauge symmetry generates a global flow

the corresponding transformations play the role of spatial-gauge ones. For
a spatial equation S, the set of all such transformations generates a group
(group operation is composition), which we call (£,S)-gauge group.

If an equation & is embedded into a certain J°°(7) and L is a horizontal
n-form such that E(L)|¢ = 0, then L (but not its cohomology class) gives
rise to a unique S-variational 1-form of £.

If € is an S-variational 1-form and for each x € OM, s, = T, M, then the
action

o /M o (€) (60)

is well-defined on S-sections, provided M is compact and oriented.
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Maxwell’'s equations

Let £ be the infinite prolongation of the Maxwell equations
OuF*" =0. (61)

Here M = R"; FI denotes O AY — 0¥ A¥; the metric is (+, —,...,—);
XV=txt . x" N uv=0,....,n—1, n>2.

We also use the spatial indices i,j,k=1,...,n— 1.
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Maxwell’'s equations

Let £ be the infinite prolongation of the Maxwell equations

OuF*" =0. (61)
Here M = R"; FI denotes O AY — 0¥ A¥; the metric is (+, —,...,—);
XV=txt . x" N uv=0,....,n—1, n>2.
We also use the spatial indices i,j,k=1,...,n— 1.
1
L= —ZFWF“”d"X, d"x = dx® A A dx"TE (62)

1
Lt wr= =3 FuF"d"x = Fub” A(@"5d"x), 0" = dA” — A dx"

! = (L —i—w,_)\g.
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Maxwell’'s equations

Let £ be the infinite prolongation of the Maxwell equations

OuF*" =0. (61)
Here M = R"; FI denotes O AY — 0¥ A¥; the metric is (+, —,...,—);
XV=txt . x" N uv=0,....,n—1, n>2.
We also use the spatial indices i,j,k=1,...,n— 1.
1
L= —ZFWF“”d"X, d"x = dx® A A dx"TE (62)

L+w = —%FWF‘“’d”x — Fu0” A (0%2d"x), 0" = dA” — 0, A" dx"
¢=(L+wr)|e. Put s=kerdt. The S-presymplectic structure:

w=—0; NG A(°d"x), (63)
where 0p; = (dFg; — Oy Foidx")|e, and 9 = 0'|¢.
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Coordinates on &: x*, and

AV FO 99A%, 92A°, ... and all their spatial derivatives, except for, say,
01 F% and its spatial derivatives.

Infinitely many degrees of spatial freedom of the form 95 A°.

Any S-symmetry has the form
X(X7777<P) = XiaAi + nia,:o; + onaAO + 9018,90,40 + 90288§A0 + ... (64)
X500, b ... € F(E) can be chosen arbitrarily, while ' € F(&) satisfy
Di(n')=0,  D;=Dile. (65)
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Coordinates on &: x*, and

AV FO 99A%, 92A°, ... and all their spatial derivatives, except for, say,
01 F% and its spatial derivatives.

Infinitely many degrees of spatial freedom of the form 95 A°.

Any S-symmetry has the form

X(x,n,cp) = XiaAi + niapm + QDOaAo + 901830,40 + 90288§A0 + ... (64)
X% @b, ... € F(E) can be chosen arbitrarily, while ' € F(&) satisfy

Di(n')=0,  Dj=Dile. (65)

Xoome) 1@ = —10; A (005 d") + i A (2°5d"x). (66)

This differential form represents the trivial S-variational 1-form iff ' =0
and there exists a function € € F(&) such that

X=D'(e i=1,....n—1. (67)
(£, S)-gauge symmetries: X(, , ) for n'=0,x = Ei(f)-
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(£, S)-gauge symmetries

5’(6)8,4; F S008A0 + @1830,40 P 802833/40 + ...
for arbitrary €, 0%, !, ... € F(E).

The degrees of spatial freedom 95 A° are spatial-gauge, while

gauge symmetries of the Maxwell equations (900 = 50(6), ot = D°

) can not get rid of the spatial-gauge freedom degrees.

(¢°).
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(£, S)-gauge symmetries

51(6)8Ai F S008A0 + @1830,40 P 802833/40 + ...
for arbitrary €, 0%, !, ... € F(E).

The degrees of spatial freedom 95 A° are spatial-gauge, while

0

gauge symmetries of the Maxwell equations (° = 50(6), o' = D (¢°),
) can not get rid of the spatial-gauge freedom degrees.
Any S-section o has the form
A =f", F¥=g' A" =h, A=K, ...
& % ° (68)

0;A” = O;f",

Y, h', k%, ... € C®(R") can be chosen arbitrarily, while g' € C*(R")
must satisfy one constraint (Gauss's law):

a,'gi =0 (69)
Here 0,f", 8ug", ... denote the partial derivatives Oyuf?”, 8X;Lgi,
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Any (£,S)-gauge symmetry: Ei(e)BA; + @00 + 1 Ogyp0 + g02835Ao +...

v

Any S-section: AV =fV, FYU =gl 9A" =hl, OZA" = h?

Any (£,S)-gauge equivalence class of S-sections has the form

f modulo + @', g (70)
% modulo + anything, h' modulo + anything, o (1)

Here e € C>*(R").
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Any (£,S)-gauge symmetry: Ei(e)BA; + @00 + 1 Ogyp0 + g02835Ao +...

v

Any S-section: AV =fV, FYU =gl 9A" =hl, OZA" = h?

Any (£,S)-gauge equivalence class of S-sections has the form

f modulo + @', g (70)
% modulo + anything, h' modulo + anything, o (1)

Here e € C>*(R").

(€, S)-gauge equivalence classes of solutions to the spatial equation <
tuples (to; Eo; Bo), where Eg and By are instantaneous electric and
magnetic field (at t = tp) respectively.
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[0 0= [ (b'si— 10t~ )@ - 9) — (2P 7))

Resolve the constraint d;g’ = 0:

g =0l ri e C®(R") ri= i (72)
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[0 0= [ (b'si— 10t~ )@ - 9) — (2P 7))

Resolve the constraint d;g’ = 0:

g =0, e C®R) ri=—p (72)
a*( (73)

0) =
(;akr"kafr,-j - %(a,-g— R — D) D ry(OF — %)) d"x.

/
]

For any compact oriented submanifold N" C R”

we can take as variations 67¥,8r¥ 6h%, 6h?, ... arbitrary functions on R”
that vanish with all their derivatives on ON and such that ér¥ = —6r/".
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Then the variational problem reduces to the corresponding E-L equations
900;ri = 8;(0'F — '),

9; (0 ryx — (Oofi — Difo)) = 0 (0% — (Bof; — 9jfy)) -

The latter equation is equivalent to the existence of A € C°>°(R") such that

OKrix — (Bof; — Dify) = DjN. (75)

(74)

Thus, an S-section o is an S-stationary point of the internal Lagrangian £
iff there is a function A € C*°(R") such that o satisfies the equations

dog' = 9;(0'F — IF'), (76)
g =0 — (0 - \). (77)
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Then the variational problem reduces to the corresponding E-L equations
do0jri = 0;(9'F — FFTy,

9; (0 ryx — (Oofi — Difo)) = 0 (0% — (Bof; — 9jfy)) -

The latter equation is equivalent to the existence of A € C°>°(R") such that

OKrix — (Bof; — Dify) = DjN. (75)

(74)

Thus, an S-section o is an S-stationary point of the internal Lagrangian £
iff there is a function A € C*°(R") such that o satisfies the equations

dog' = 9;(0'F — IF'), (76)
g =0 — (0 - \). (77)

Any S-stationary point A = ¥, FO = g/ 9,A° =hl, ... = into a
solution using ®1, where ®7 is the flow of the (£, S)-gauge symmetry

©°0p0 + 0 g0 + @288§A0 +.. (78)

for @@= -\, ! =—hl4+5(f°- 1), 302:—h2+8§(f0—)\),

V.
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Remarkable conclusion

All S-stationary points of the Maxwell system are (€, S)-gauge equivalent
to its solutions!

Since Maxwell's equations are Lorentz-invariant, the same conclusion can
be made for all spatial distributions that one can obtain from the S using
Lorentz transformations.
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Remarkable conclusion

All S-stationary points of the Maxwell system are (€, S)-gauge equivalent
to its solutions!

Since Maxwell's equations are Lorentz-invariant, the same conclusion can
be made for all spatial distributions that one can obtain from the S using
Lorentz transformations.

Let us consider an example of a variational equation that is not a
Lagrangian one. The potential KdV equation

Uy = 3u,2( + Usx (79)

admits the differential consequence E(L) = 0, where

2
L:(”X”t—u§+ﬁ)dt/\dx. (80)

2 2
E: t, X, U, Uy, Uy, Uxxxs - - - D, Dy (81)
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The corresponding internal Lagrangian £ is represented by

2 2
1 _
e—(”*”g*W“)—@+f?)&Adx—2@ﬁ+umawAey+

_ 1 -
+ Uy dt A Oy + §uxeo A dx, (82)

0o = du — uxdx — (U2 + Uxux)dt, Oy = dux — UxxdX — (6l lxx + Uxxx ) dt.
Let S be the lift of the distribution ker dt. The S-presymplectic structure:

1.
w=50x N\l Ndx. (83)
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The corresponding internal Lagrangian £ is represented by

2 2
X XXX ]- n
(= (B30 o) 3y ) g e (302 ) dE A +
2 2 2
_ 1 -
+uXth/\9X+§uX90/\dx, (82)

0o = du — uxdx — (U2 + Uxux)dt, Oy = dux — UxxdX — (6l lxx + Uxxx ) dt.
Let S be the lift of the distribution ker dt. The S-presymplectic structure:

1.
wziﬂx/\Qo/\dx. (83)
Any S-symmetry of the potential KdV equation has the form

X = 00y + Du(9)uy + Dy ()P + - - » (84)

where ¢ € F(&) can be chosen arbitrarily. Then

1/ _ _ _ _ _
Xiw= 5 (Dx(go)eo — <p0x) A dx € Dy(p)0o A dx + d(g 90> + S2A%(€)
and (£, S)-gauge symmetries are given by functions of the form ¢ = p(t).
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S-stationary points are (€, S)-gauge equivalent to solutions

Any S-section o has the form
o u="F, u=0, uu=0, uux=0F, ..., (85)
where f € C°°(R?) can be chosen arbitrarily.

o () = (@ — (8eF)® + @)dt A dx, (86)

S-stationary points are described by the Euler-Lagrange equation

6X(6tf—3(8xf)2—83f):0 & O f =3(0kF)2+ 03 +g(t) (87)
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S-stationary points are (€, S)-gauge equivalent to solutions

Any S-section o has the form

o u="F, ug=0k, uy=0F, U =0F, , (85)
where f € C°°(R?) can be chosen arbitrarily.
L F O f 2f)2
o () = (% — (8eF)® + @)dt A dx, (86)

S-stationary points are described by the Euler-Lagrange equation
Oy <6tf —3(0ef)? — ajf) =0 o Of =3(0F)?+ 93 +g(t) (87)

Denote by CDT the flow of the (£,S)-gauge symmetry ¢ = — fo dr.
d)l relate S- statlonary points to solutions of the potential KdV.
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nd potential KdV

Uy = 3u)2< 4 Uyxx
jp PV = Uy, Vx = Uxx, -.. (88)

Vi = OVVy 4+ Vix
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KdV and potential KdV

ug = 3U)2< + Uxxx
lp PV = Uy, Vx = Uxx, -.. (88)

Vi = OVVy 4+ Vix

p establishes the one-to-one correspondence

@ between (£, S)-gauge equivalence classes of S-sections of the potential
KdV and p.(S)-sections of the KdV equation.

@ between (£,S)-gauge equivalence classes of S-stationary points of £
and solutions to the KdV.

Thus, in this example, (£, S)-gauge symmetries lead to the description of
dynamics given by another equation (spatial-gauge Cauchy problems for
potential KdV = Cauchy problems for KdV).
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Covariant child

Suppose £ is an internal Lagrangian of & represented by a form ¢ € A"(E).

A section o of the bundle 7¢ is an almost solution if for each x € M,

dim (dox(TxM) N Cpx)) = n—1. (89)

v

A mapping 7: R x M — &£ is a path in almost solutions of g if the

Y(7): x = (7, x) (90)

are almost solutions of 7¢ for all 7 € R.
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Covariant child

Suppose £ is an internal Lagrangian of & represented by a form ¢ € A"(E).

A section o of the bundle 7¢ is an almost solution if for each x € M,

dim (dox(TxM) N Cpx)) = n—1. (89)

v

A mapping 7: R x M — &£ is a path in almost solutions of g if the

Y(7): x = (7, x) (90)

are almost solutions of 7¢ for all 7 € R.

Almost solutions o and ¢’ of m¢ are almost gauge equivalent if there exist
diffeomorphisms fi,..., fi: £ — £ such that

1) each f; is an Sj-gauge transformation, where S; is a spatial distribution;
2) o is an S;-section; 3) fio...ofi o0 is an Sjyi-section, 1 < i< k—1;
4) o' =fio...0ofhofoo.

v
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An almost solution o is a stationary point of £ if

for any compact oriented submanifold N” C M", the relation

d *
o J Aty =o

dr

holds for each path ~ in almost solutions such that v(0) = o and all points

of the boundary ON are fixed.

(91)

v
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An almost solution o is a stationary point of £ if

for any compact oriented submanifold N” C M", the relation

d
dr

o Jatr@=o (1)

holds for each path « in almost solutions such that v(0) = o and all points
of the boundary ON are fixed.

| \

Covariant canonical variational principle

An almost gauge equivalence class satisfies the covariant canonical
variational principle if it can be represented by a stationary point of £.

@ The choice of a representative of £ has no impact.

@ Solutions of a variational equation produce almost gauge equivalence
classes that satisfy the covariant canonical variational principle.

o No concept/role of time.
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EcJ®(r), E()e=0

{LeN(E): dl e CPAL(E)}

L A 92
7 AC T CAI(€)) 1 C2A(E) (92)
If M is compact and oriented, then the action
o / o*(A) (93)
M
is well-defined on almost solutions such that Vx € OM,
dO’x(TX 8/\/]) C Ca(x) (94)
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Main weakness of this approach

Constrained variational problems may arise due to the non-triviality of
spatial equations.
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Thank you!
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