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Outline

1 Main problems

From a cohomological point of view, it seems reasonable to say that

variational equations encode their variational nature through certain

cohomology elements, which we call internal Lagrangians. But what

is the meaning of these cohomologies? Why (how) do they encode

admissible Lagrangians?

What details about the variational nature of a di�erential equation are

known to its internal Lagrangians?

2 Main results

Each principle of stationary action reproduces itself in terms of the

intrinsic geometry of a variational equation.

One can consider variations of internal Lagrangians within di�erent

classes of submanifolds. Non-degenerate Lagrangians produce internal

Lagrangians, which can be considered non-degenerate in some sense.
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Basic notation

Let us consider a locally trivial smooth vector bundle π : E → M. Here

dimM = n, dimE = n + m;

x1, . . . , xn are local coordinates in U ⊂ M (independent variables);

u1, . . . , um are local coordinates along the �bres of π over U.

The bundle π determines the corresponding bundle of in�nite jets

π∞ : J∞(π)→ M

with the adapted local coordinates uiα along the �bers. The Cartan (Pfa�,

Lie, contact) distribution is spanned by the total derivatives

Dxk = ∂xk + uiα+xk∂ui
α
, k = 1, . . . , n, |α| > 0.

Here α is a multi-index of the form α = αix
i (just a formal linear

combination), αi > 0; |α| = α1 + . . .+ αn.
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Basic notation

By a Cartan di�erential form we mean a form vanishing on the Cartan

distribution. A Cartan 1-form ω ∈ CΛ1(π) can be written as a �nite sum

ω = ωαi θ
i
α , θiα = duiα − uiα+xkdx

k (1)

in adapted local coordinates. The module CΛ1(π) determines the

corresponding ideal of the algebra Λ∗(π). We denote by C2Λ∗(π) the

wedge square of this ideal.

Horizontal n-forms can be regarded as Lagrangians

Λn
h(π) = Λn(π)/CΛn(π) . (2)

If L ∈ Λn(π) has the form L = λ dx1 ∧ . . . ∧ dxn, then E[L]h is de�ned by

E[L]h = (−1)|α|Dα
( ∂λ
∂uiα

)
θi0 ∧ dx1 ∧ . . . ∧ dxn. (3)
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Internal Lagrangians

Suppose we have a system of di�erential equations

F = 0 , (4)

where F is a section of some bundle of the form π∗∞(η). Denote by E its

in�nite prolongation. If L ∈ Λn(π), then a certain cohomological reasoning

(Noether's identity LEϕ [L]h = iEϕE[L]h + dh[iEϕωL], the Vinogradov

C-spectral sequence) leads to various decompositions of the form

dL− E[L]h ∈ C2Λn+1(π) + d(CΛn(π)) . (5)

This results in the following commutative diagram

[L]h such that E[L]h|E = 0

��

// [L]h + dhΛn−1
h (π)

��

S ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(CΛn−1(E))

^^

// ` ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(Λn−1(E))

]]

(internal functional) (internal Lagrangian)
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Integral functionals

To obtain a uniquely de�ned integral functional, it is necessary to get rid of

terms that belong to C2Λn(E),

the boundary terms d(CΛn−1(E)).

Further we prefer the Lagrangian approach to the Eulerian one and

consider deformations of embeddings rather than motions of their images.

Let us �x a compact oriented n-dimensional manifold N with boundary.

De�nition

An embedding σ : N → E is an almost Cartan embedding if

dim (Tp σ(N) ∩ Cp) > n − 1 for all p ∈ σ(N) .

Notation: σ ∈ AN(E).

Motivation: if σ ∈ AN(E), then σ∗(C2Λn(E)) = 0.
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Example

Consider the heat equation ut = uxx and its in�nite prolongation

E : ut − uxx = 0, Dx(ut − uxx) = 0, Dt(ut − uxx) = 0, . . .

We can regard x , t, u and all the derivatives w.r.t. x as coordinates on E .
Suppose we have some IVP : t = 0, u = f0(x). All the coordinate functions

ux , uxx , . . . can be determined using these data and Dx = Dx |E :

u = f0(x), ux = ∂x f0(x), uxx = ∂2x f0(x), uxxx = ∂3x f0(x), . . .

We can consider IVPs of the form u = f (x , t0) for all t0 ∈ R and apply the

same approach to them:

u = f (x , t0), ux = ∂x f (x , t0), uxx = ∂2x f (x , t0), . . .

Substituting t for t0 in these formulas, we obtain an embedding of R2 to E .
The restriction of this embedding to a compact submanifold of R2 is an

almost Cartan embedding, since its image is tangent to the vector �eld Dx .
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De�nition

A σ ∈ AN(E) de�nes a boundary value problem if

Tp σ(∂N) ⊂ Cp for all p ∈ σ(∂N) .

Notation: σ ∈ BAN(E).

(This is how solutions behave on ∂N). Motivation: if σ ∈ BAN(E), then∫
N

σ∗(C2Λn(E) + dCΛn−1(E)) =

∫
∂N
σ∗(CΛn−1(E)) = 0. (6)

Let [L]h be a horizontal n-form such that the variational derivative E[L]h
vanishes on E . Then [L]h determines a unique integral functional

S : BAN(E)→ R , S(σ) =

∫
N

σ∗(l) , (7)

where l represents an element of the corresponding quotient. If σ de�nes a

solution to E , then S(σ) coincide with the value of the original action on σ.
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Current picture

A compact oriented n-dimensional manifold N, and

[L]h such that E[L]h|E = 0

��

// [L]h + dhΛn−1
h (π)

��

S ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(CΛn−1(E))

^^

��

// ` ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(Λn−1(E))

]]

��
functional on BAN(E) ambiguous functional on AN(E)

However, we prefer to de�ne stationary points of internal Lagrangians,

since this approach allows us to avoid some technical di�culties.

Therefore, below we take into account all almost Cartan embeddings

AN(E), and not only those that de�ne boundary value problems.
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Variation of an internal Lagrangian

Consider a path in AN(E), that is, a smooth mapping γ : R× N → E such

that for all τ ∈ R the mappings

γ(τ) : N → E , γ(τ) : x 7→ γ(τ, x) (8)

are almost Cartan embeddings. Let 0N denote the zero-section

0N : N → R× N, 0N(x) = (0, x). (9)

Then γ(0) = γ ◦ 0N . If the boundary is �xed, we obtain

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(l) =

∫
N

0∗N
(
i∂τγ

∗(dl)
)
. (10)

So, the derivative along a path γ is completely determined by the

corresponding presymplectic structure dl + C3Λn+1(E) + d(C2Λn(E)).
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General picture

A compact oriented n-dimensional manifold N, and

[L]h such that E[L]h|E = 0

��

// [L]h + dhΛn−1
h (π)

��

S ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(CΛn−1(E))

^^

��

// ` ∈ {l ∈ Λn(E) : dl ∈ C2Λn+1(E)}
C2Λn(E) + d(Λn−1(E))

**

]]

��
functional on BAN(E)

��

ambiguous functional on AN(E)

��
unambiguous variations unambiguous variations
along paths in BAN(E) along paths in AN(E)

(due to the corresponding presymplectic structure)
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Stationary points of internal Lagrangians

De�nition

A σ ∈ AN(E) is a stationary point of ` = l + C2Λn(E) + d(Λn−1(E)) if

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(l) = 0 (11)

for any path γ in AN(E) such that γ(0) = σ and the boundary is �xed.

If σ de�nes a solution to E , then it is a stationary point of any internal

Lagrangian of E :

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(l) =

∫
N

0∗N
(
i∂τγ

∗(dl)
)

(12)

One can also de�ne stationary points of conservation laws the same way.
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Example

Consider Laplace's equation uyy = −uxx and its in�nite prolongation E . Let
N ⊂ R2 be a compact submanifold. There is the Lagrangian [L]h, where

L = −
u2x + u2y

2
dx ∧ dy . (13)

The corresponding internal Lagrangian is represented by the restriction of

L + ωL = −
u2x + u2y

2
dx ∧ dy − ux θ0 ∧ dy + uy θ0 ∧ dx . (14)

Suppose Y ∈ C∞(N) is a function on N, and σ ∈ AN(E) is a (local)

section of the bundle π∞|E such that

dσ(∂x + Y ∂y ) = Dx + YDy for all (x , y) ∈ N. (15)

Then in local coordinates on E we have

σ : u = f , ux = ∂x f + Y (∂y f − g), uy = g , . . . (16)

Arbitrary smooth functions f , g : N → R determine an appropriate σ and

vice versa.
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Example

Let δf , δg , and δY be arbitrary smooth functions on N vanishing together

with all their derivatives on ∂N. Substituting f + τδf , g + τδg , and
Y + τδY for f , g , and Y in σ, we obtain the corresponding path γ. It
su�ces to consider the pullback

γ(0)∗(l) =
(Y 2(∂y f − g)2 − (∂x f )2 + g2

2
− g∂y f

)
dx ∧ dy , (17)

where l = (L + ωL)|E . Varying w.r.t. the variables f and g , we obtain

∂2x f + ∂y g + ∂y
(
Y 2(g − ∂y f )

)
= 0 , (g − ∂y f )(Y 2 + 1) = 0 . (18)

So, here we don't even need to vary w.r.t. the variable Y . As we will see

below, this is not a coincidence.

Thus, an almost Cartan embedding σ ∈ AN(E) that is a local section of

the bundle π∞|E is a stationary point of the internal Lagrangian under

consideration i� it de�nes a solution to E .
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consideration i� it de�nes a solution to E .
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In�nitesimal symmetries of an in�nitely prolonged system of equations E
act on its internal Lagrangians by means of the Lie derivative.

The de Rham di�erential d induces the mapping from internal Lagrangians

to presymplectic structures, i.e., elements of the kernel of the di�erential

d2, n−1
1

: E 2, n−1
1

(E)→ E 3, n−1
1

(E) . (19)

Here Ep, q
r (E) are groups of the Vinogradov C-spectral sequence. The

inclusions

Λ∗(E) ⊃ CΛ∗(E) ⊃ C2Λ∗(E) (20)

allow us to establish the following version of the Noether theorem

Theorem

Let ` be an internal Lagrangian, and let X be an in�nitesimal symmetry of

an in�nitely prolonged system of di�erential equations E . If ` is invariant

under the action of X , then X gives rise to conservation laws. Otherwise,

X produces the non-trivial internal Lagrangian LX `.

Besides, if E admits gauge symmetries, then all its internal Lagrangians are

gauge invariant (since all its presymplectic structures are).
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ξ-stationary points

Suppose N ⊂ Mn is a compact oriented n-dimensional submanifold, where

M is the base of some jets bundle π∞. Denote the restriction π∞|E by πE .

De�nition

We say that σ ∈ AN(E) is an almost Cartan section of πE if πE ◦ σ = idN .

De�nition

Let ξ ∈ Λ1(M) be a covector �eld. An almost Cartan section σ : N → E is

a ξ-section of πE if dσ(ker ξ|x) ⊂ Cσ(x) for all x ∈ N.

De�nition

Let ` be an internal Lagrangian of E , l ∈ ` be a di�erential form

representing `. We say that a ξ-section σ is a ξ-stationary point of ` if

d

dτ

∣∣∣
τ=0

∫
N

γ(τ)∗(l) = 0

for any path in ξ-sections such that γ(0) = σ and the boundary is �xed.
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On non-degenerate Lagrangians

If a ξ-section is a stationary point of an internal Lagrangian, it is also a

ξ-stationary one.

Theorem

Let L be a di�erential n-form on Jk(π), k > 1, and let E be the in�nite

prolongation of the Euler-Lagrange equations E[L]h = 0. Suppose

ξ ∈ Λ1(M) is a non-vanishing, non-characteristic covector �eld for the

{E[L]h = 0} ⊂ J2k(π) such that the distribution ξ = 0 is integrable. Then

a ξ-section is a ξ-stationary point of the corresponding internal Lagrangian

if and only if it is a (local) solution to πE .

One can say that such ξ is related to (n−1, 1) decomposition. This theorem

is inapplicable to gauge theories. However, it is worth noting that internal

Lagrangians can be restricted to subsystems that arise after gauge �xing.

Let us also note that the Proca theory and the massive spin-2 theory are

examples of degenerate non-gauge Euler-Lagrange expressions.
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Characteristics and internal Lagrangians

Let us denote by E the in�nite prolongation of the wave equation

uxy = 0 .

Suppose N ⊂ R2 is a connected compact 2-dimensional submanifold. Any

dy -section N → E has the form

u = f , ux = ∂x f , uy = h1, uxx = ∂2x f , uyy = h2, . . . (21)

Here f , h1, h2, . . . are functions on N. The function f can be chosen

arbitrarily, while the functions h1, h2, . . . do not depend on the variable x .

But using the internal Lagrangian of the wave equation, we cannot get an

in�nite number of relations between these functions h1, h2, h3, . . .

So, characteristics can cause problems.
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Characteristics and internal Lagrangians

Consider the 1-d Schrödinger equation for ~ = 1, m = 1/2, Ψ = u + iv :

− vt + uxx − V (x)u = 0 , ut + vxx − V (x)v = 0 . (22)

This system is a Lagrangian one,

L =
(utv − uvt

2
− u2x + v2x

2
− V (x)

u2 + v2

2

)
dt ∧ dx . (23)

Suppose N ⊂ R2 is a connected compact 2-dimensional submanifold. The

covector �eld dt de�nes the characteristic subdistribution.

Choosing ut , vt as external coordinates for the in�nite prolongation E , we
see that any dt-section σ : N → E has the form

σ : u = f , v = g , ux = ∂x f , vx = ∂x g , . . . (24)

The functions f and g are arbitrary functions on N.
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The desired internal Lagrangian is represented by the form

l = −u2x + uuxx + v2x + vvxx
2

dt ∧ dx +
1

2
(v θu0 − u θv0 ) ∧ dx −

− dt ∧ (ux θ
u
0 + vx θ

v
0 ).

(25)

Assume that γ : R× N → E is a path in dt-sections such that the

boundary is �xed. Then we can only vary w.r.t. the variables f and g .

Eventually, we �nd

σ∗(l) =
(g∂t f − f ∂tg

2
− (∂x f )2+ (∂xg)2

2
− V (x)

f 2+ g2

2

)
dt ∧ dx . (26)

Comparing this pullback with the original Lagrangian, we can conclude that

all dt-stationary points of the internal Lagrangian are local solutions to πE .

So, one can identify dt-sections of an evolutionary system of equations

with sections of its original bundle π : E → M. In this case, the variation of

an internal Lagrangian within the class of dt-sections has the same physical

meaning as the variation of the corresponding Lagrangian (on jets).
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A surprising example

Consider the potential KdV equation

ut − 3u2x − uxxx = 0 (27)

and its in�nite prolongation E . This equation admits the presymplectic

operator ∆ = Dx with non-trivial kernel. The corresponding presymplectic

structure should be considered a degenerate one. It can be related only to

a variational principle that gives a consequence of the original equation, but

not the potential KdV itself.

There exists a unique internal Lagrangian ` producing the same

presymplectic structure:

l =
(uxut

2
− u3x +

u2xx
2

)
dt ∧ dx − 1

2
ut dt ∧ θ0 + uxx dt ∧ θx +

1

2
ux θ0 ∧ dx ,

where θ0 = du − ux dx − ut dt and θx = dux − uxx dx − uxt dt. Here we

regard the variable uxxx and its derivatives as external coordinates for E .
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A surprising example

Suppose N ⊂ R2 is a connected compact 2-dimensional submanifold. Let

us de�ne ξ by

ξ = dx − X (t, x)dt . (28)

Then a ξ-section σ is of the form

σ :
u = f , ux = g , ut = ∂t f + X (∂x f − g),

uxx = h, uxt = ∂tg + X (∂xg − h), . . .
(29)

Here f , g and h are arbitrary functions on N. The expressions for all other

coordinates on E are unambiguously de�ned.

So, we get the pullback

σ∗(l) =
(
− ∂x f ∂t f

2
+ g ∂t f − g3 + h ∂xg −

h2

2
− X

2
(∂x f − g)2

)
dt ∧ dx .

Kostya Druzhkov Internal Lagrangians of PDEs 20 September 2023 22 / 24



σ∗(l) =
(
− ∂x f ∂t f

2
+ g ∂t f − g3 + h ∂xg −

h2

2
− X

2
(∂x f − g)2

)
dt ∧ dx .

Varying the corresponding action with respect to f , g and h, we obtain

∂t(∂x f − g) + ∂x
(
X (∂x f − g)

)
= 0 ,

∂t f − 3g2 − ∂xh + X (∂x f − g) = 0 ,

∂xg − h = 0 .

(30)

These equations do not imply the relation ∂x f = g . Therefore, the set of

ξ-stationary points contains more than just local solutions. However, we

can also vary w.r.t. X (i.e., perturb ξ). As a result, we get the missing

∂x f = g . (31)

Thus, if ξ determines a non-characteristic distribution, then a ξ-section σ is

a stationary point of the internal Lagrangian ` i� σ is a local solution. But

this is not the case for ξ-stationary points.
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Thank you very much!
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	Main problems
	From a cohomological point of view, it seems reasonable to say that variational equations encode their variational nature through certain cohomology elements, which we call internal Lagrangians. But what is the meaning of these cohomologies? Why (how) do they encode admissible Lagrangians?
	What details about the variational nature of a differential equation are known to its internal Lagrangians?

	Main results
	Each principle of stationary action reproduces itself in terms of the intrinsic geometry of a variational equation.
	One can consider variations of internal Lagrangians within different classes of submanifolds. Non-degenerate Lagrangians produce internal Lagrangians, which can be considered non-degenerate in some sense.


