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Analogy between geometry of manifolds and geometry of PDEs

Geometry of manifolds: Geometry of PDEs:
. Infinite prolongation

Manifold of a PDE in a jet space

de Rham cohomology Horizontal cohomology of a PDE
of a manifold (conservation laws)
Coverings Differential coverings
venng (Backlund transformations)
Fundamental group Fundamental Lie algebra

of a manifold of a PDE




Differential coverings (A. Vinogradov, |. Krasilshchik)
Example: Miura transformation

KdV = {ut = Uxxx + 6uux} M mKdV = {vt = Vyxx — 6v2vx}

This is a map from solutions v(x, t) of mKdV to solutions u(x, t) of KdV.
The preimage of each solution u(x, t) of KdV is a one-parameter family of
solutions v(x, t) of mKdV.

General definition of coverings in coordinates:
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The preimage of each solution uj(x,-) of & is a family of & solutions vk(y,-)
dependent on a finite number D of parameters.
D is the dimension of fibers of the covering.



&1 and & are connected by a Backlund transformation if there is &

and a pair of coverings
&3

vd N\
51 52

This allows to obtain solutions of & from solutions of £;:
take a solution of &1, find its preimage in &3, and project it to &.

Example: Ve = Vix — V2V, + BAvy

u=vy—v2+4

U = Usxx + 60U, U = Uyxx +6 U,

Trivial solution 1-soliton 2-soliton
— : — )
u(x, t)=const solution solution



Example: the infinite prolongation of KdV.

Infinite jet space J°° = (x,t, u, Uy, Up, Uxx, Uxt, Ugty - - - )-

Total derivative operators
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are commuting vector fields on J*.

Consider the submanifold £ C J°° determined by KdV and all its differential
consequences

2
Ur = Uy +0ULx, U = Ugexe FO0U U +0UUKE,  Upx = U T 0U +0ULxy, . ..

Dy, D; are tangent to £ and span a 2-dimensional distribution on £.
Solutions of KdV correspond to integral submanifolds of this distribution.
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The infinite jet space J™ = (x;, o/, u{;, cl )

N 0
Total derivative operators D, = + D0 u; uf are vector fields on J*°.

PDE: F.(x,v/,i/,...)=0, r=1,...,s.
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Infinite prolongation of the PDE: & = {D,, ...D

Xip
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Vector fields Dy, are tangent to £ and span the Cartan distribution C(€) on £.

Solutions of the PDE correspond to integral submanifolds of this distribution.



An object of the category of PDEs is a pair (£,C(£)), where £ is a manifold
and C(€) is a distribution on &, such that (£,C(&)) is locally isomorphic to the
infinite prolongation of a PDE.

A morphism 7: (&,C(&)) — (&1,C(&1)) is a smooth map 7: & — &

Vac 52 Tk - Tagz — TT(a)51 T (C(gz)a) C C(51)T(a)

A morphism 7 is a differential covering if 7: £&; — &1 is a bundle with
finite-dimensional fibers and

Vac 52 T - C(gz)a — C((‘:l).,.(a) is an isomorphism.

If C(£)a = T,E then differential coverings are topological coverings.

Topological coverings of a manifold M are determined by actions of the
fundamental group 71 (M, a) for a € M.

We need an analog of 71 (M, a) for differential coverings. This analog will be a
Lie algebra, because differential coverings are studied locally.



For any analytic PDE &, we naturally define a Lie algebra 71 (&, a) for every
point a € £.
m1(&, a) is called the fundamental Lie algebra of £ at a € £,

The correspondence (£, a) — m1(&, a) is a functor from the category of PDEs
to the category of Lie algebras.

Coverings over & with fibers W are determined by actions of 71 (&, a) on W
(homomorphisms from 71 (€, a) to the Lie algebra of vector fields on W).

For any covering 7: & — &, the algebra 71 (&, a) acts on the fiber 771(a).
Morphisms of coverings preserve the action of 71 (&, a).

If the PDE satisfies some non-degeneracy conditions, any action of 71(&, a) on
W gives a covering with fiber W on the level of formal power series. Usually
these formal power series converge, so one gets locally an analytic covering.

There is an algorithm to compute the algebra 71 (€, a) in terms of generators
and relations. (The number of generators and relations may be infinite.)



For a topological covering 7: M’ — M,
aeM, a=7(a') e M, m (M, a") = w1 (M, a).

For a differential covering 7: &' — €&, aef, a=T7(a') €€,
m1 (&', d’) is isomorphic to a subalgebra of 71 (&, a) of finite codimension.

Let &1 and &, be connected by a Bicklund transformation

&3
N\
& &

as 653, 3127'1(83)651, 8227'2(83)652,
m1(€3, @3) — w1 (&1, a1), m1(€3, a3) — m1 (&2, @2)

Therefore, m1(&1, a1) and m1(&2, a2) have a common subalgebra of finite

codimension. This is a powerful necessary condition for existence of a Backlund
transformation between & and &.



If £ is integrable by zero-curvature representations (like KdV, sine-Gordon,
WDVV), then dim (€, a) = oo.

For a wide class of PDEs, m1(€,a) 2 m(E,b) Va, be€.

In computations, m1(&, a) is the inverse limit of a sequence of surjective
homomorphisms of Lie algebras

o FRE 2) o FR(E,2) = - - FY(E,2) — FO(€, 2)

Actions of FX(E, a) classify (with respect to gauge equivalence) coverings
dependent on jets of order k + p — 1, where p is the order of the PDE €.

In coordinate computations, an algebra similar to FO(&, a) was introduced for
some PDEs by H. Wahlquist and F. Estabrook. A. Vinogradov noticed (1986)
that this Lie algebra plays a role similar to the fundamental group.
But FO(&, a) does not have any coordinate-independent meaning.

The explicit structure of FO(€,a) was computed for many PDEs by H. van Eck,
G. Roelofs, R. Martini.



Examples: for the KdV, NLS, Krichever-Novikov, Landau-Lifshitz equations,

FK(E,a) = L & Ny

L is some infinite-dimensional Lie algebra of certain matrix-valued functions on
an algebraic curve of genus 1 or 0,
Ny is finite-dimensional and nilpotent.

For the Krichever-Novikov equation, FO(&,a) = 0.



How to extract algebraic curves from 71(&, a)

Let S(&, a) be the Lie algebra obtained from 71 (€, a) by ‘killing” all solvable
ideals.

A(E.a) = { f: S(€.2) =+ S(£.3) | F(lpr. pal) = [F(p1), p2] }

In the above examples, A(E, a) is isomorphic to the algebra of polynomial
functions on an algebraic curve.

Rational curve (genus = 0) for KdV and nonlinear-Schrédinger.
Elliptic curve for Krichever-Novikov and Landau-Lifshitz.
(In the computation, we use some results of D. Demskoi, V. Sokolov.)

Let & and & be some PDEs from these examples, a; € &, a, € &.
If the curves A(&1, a1) and A(&, ap) are not birationally equivalent,
then there is no Bicklund transformation between £; and &.

This solves a classical problem about the classification of some classes of PDEs
with respect to Bicklund transformations.

A(&, a) provides an invariant meaning for algebraic curves related to PDEs.



An m-component generalization of Landau-Lifshitz was introduced by
I. Golubchik and V. Sokolov.

For this PDE, the Lie algebras FX(&, a) have the following structure
(S. Ig., J. van de Leur, G. Manno, V. Trushkov):

FO(&, a) is isomorphic to the infinite-dimensional Lie algebra L of certain
matrix-valued functions on an algebraic curve of genus 1+ (m—3)2™2.
For any k > 1, there is a surjective homomorphism

Fk(&,a) — L@ s0,_1(C) with solvable kernel.

For the Darboux—Egoroff system (which is used in topological field theory and
the theory of Frobenius manifolds),
there is a surjective homomorphism from 71 (€, a) to the Z-graded part of a
twisted affine Kac-Moody algebra.



The fundamental group 71 (M, a) can be defined using only topological
coverings of M (without using loops in M).

g € m1(M, a) gives a transformation g,: 7-!(a) — 7 1(a) for each 7: M — M

For any M; — My, onehas grop=pogn (1)

AV2

g € m1(M, a) is uniquely determined by the collection of transformations
{gr-: 771 (a) = 77!(a) | 7 is a covering}.
One can define an element of 7;(M, a) as a collection of such

transformations satisfying (1).

To define m1(&, a), replace M by &, topological coverings by differential
coverings, transformations on fibers by vector fields on fibers.



To obtain the correct definition of 71 (&, a), consider ‘generalized coverings':
formal zero-curvature representations with coefficients in Lie algebras.

Analytic functions are replaced by formal power series,
Lie algebras of vector fields are replaced by arbitrary Lie algebras.

Let L be a Lie algebra. Let w be a formal L-valued differential 1-form on C(E).
w is called a zero-curvature representation (ZCR) if it satisfies the

d-Maurer-Cartan equation d(w) + E[w,w] = 0.
g € m(&, a) determines g, € L for each L-valued ZCR w.
g € m1(€, a) is determined uniquely by the collection of elements

{gw elL ‘ VL Vw}, which are in agreement with respect to morphisms of ZCRs.
We define an element of 71(€, a) as such a collection.

To compute 71(&, a) in terms of generators and relations, we find a ‘normal’
form for ZCRs with respect to the action of the group of gauge
transformations. (This involves a step similar to finding a Grobner basis.)
Then we take a ‘general’ ZCR & in this normal form, the coefficients of & are
regarded as generators of a Lie algebra, and the equation d(&) + 3[@,&] =0
provides some Lie algebraic relations for these generators.



