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Goals of this talk:
1 First, we present various examples of sets of compatible Lax

equations in the algebra MPsd of matrix pseudo differential
operators. On one hand these systems depend of the choice of
a maximal commutative algebra h in Mn(k), where k = R or
k = C. On the other hand the form of the equations of the
system depends of different decompositions of MPsd. We treat
two examples of such decompositions.

2 Secondly, we show in the complex case how one can construct
solutions of these systems starting from infinite dimensional
varieties. For the first decomposition, we use a Grassmannian
of a suitable Hilbert space and for the second we need a fiber
bundle over this Grassmannian.
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Scalar case 1

Example: KP hierarchy

R commutative k-algebra, k = R,C,

∂ : R 7→ R, k-linear derivation

R[∂] differential operators in ∂ with coefficients from R.

R[∂] = {
∑n

i=0 ai∂
i , ai ∈ R}, where

n∑
i=0

ai∂
i : r 7→

n∑
i=0

ai∂
i (r), r ∈ R

R[∂] k-algebra, multiplication a =
∑

j aj∂
j and b =

∑
i bi∂

i

ab :=
∑

j

∑
i

∑
s6j

(
j
s

)
aj∂

s(bi )∂ i+j−s .
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Scalar case 2

We require now:

Assumption: {∂ i | i > 0} are R-linear independent in R[∂].

Example: R = R0[x ] with R0 a k-algebra, ∂ = d
dx .

Assumption ⇒ R[∂] has an extension Psd=R[∂, ∂−1), the
algebra of pseudo differential operators consisting of

R[∂, ∂−1) = {p =
N∑

j=−∞
pj∂

j , pj ∈ R}.

If one uses for each n ∈ Z, the notation(
n
k

)
:=

n(n − 1) · · · (n − k + 1)
k!

,

then same formula for multiplication in R[∂, ∂−1) as in R[∂].
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Scalar case 3

Notations in Psd: if p =
∑N

j=−∞ pj∂
j ∈ R[∂, ∂−1), then

p>0 =
N∑

j=0

pj∂
j , p<0 =

∑
j<0

pj∂
j

Psd>0 = {p | p = p>0} Lie subalgebra of Psd.

Psd<0 = {p | p = p<0} Lie subalgebra of Psd.

Psd= Psd>0 ⊕ Psd<0

Group corresponding to Psd<0:

K<0 = {p = 1 +
∑
j<0

pj∂
j | pj ∈ R}
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Scalar case 4

Consider the k-subalgebra R0 := {r ∈ R | ∂(r) = 0} of R.

R0[∂] is a maximal commutative k-subalgebra of R[∂].

Deformations of R0[∂]: R0[K∂K−1],K ∈ K<0.

L = K∂K−1 = ∂ + l2∂−1 + l.o. · · · generator of R0[L].

Any k-linear derivation ∆ : R → R commuting with ∂ defines
a k-linear derivation of Psd by

∆(
N∑

j=−∞
pj∂

j) =
N∑

j=−∞
∆(pj)∂j

Let {∂i | i > 1} be a set of k-linear derivations of R
commuting with ∂.

The data (R, ∂, {∂i}) is a setting for the KP hierarchy.
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Scalar case 5

Example: R = k[ti ] or k[[ti ]], ∂i = ∂
∂ti

and ∂ = ∂1

Search for deformations L s.t.

∂i (L) = [(Li )>0, L] = [Bi , L], all i > 1 (1)

Since B1 = ∂, there holds then ∂1(L) = ∂(L).

L solution of the KP hierarchy in this setting.

The system (1) is compatible, i.e. it satisfies

∂i1(Bi2)− ∂i2(Bi1)− [Bi1 ,Bi2 ] = 0, (2)

zero curvature relations.
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Matrix case 1

(R, ∂) as above. Action of ∂ on Rn and Mn(R):

∂(~a) = ∂(

a1
...
an

) =

∂(a1)
...

∂(an)

 and ∂({mij}) = {∂(mij)}.

∂ : Mn(R)→ Mn(R) k-linear derivation.
Differential operators in ∂, coefficients from Mn(R):

Mn(R)[∂] = {
n∑

i=0

mi∂
i ,mi ∈ Mn(R)}

Action of Mn(R)[∂] on Rn:
n∑

i=0

mi∂
i : ~a 7→

n∑
i=0

mi∂
i (~a)
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Matrix case 2

Examples of Lax equations in Mn(R)[∂]:
AKNS equations, Nonlinear wave equation

Again we require :

Assumption: Mn(R)[∂] acts faithfully on Rn.

Then Mn(R)[∂] ⊂ Mn(R)[∂, ∂−1)=:MPsd, the algebra of
matrix pseudo differential operators:

MPsd = {m =
N∑

j=−∞
mj∂

j ,mj ∈ Mn(R)}

Addition and multiplication rules as in Psd.
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Matrix case 3

Two decompositions in MPsd. First, the case Deco(I):

MPsd = MPsd>0 ⊕MPsd<0

MPsd>0 = {m | m = m>0} Lie subalgebra of MPsd.
MPsd<0 = {m | m = m<0} Lie subalgebra of MPsd.
Second decomposition, the Deco(II)-case:

MPsd = MPsd>0 ⊕MPsd60

MPsd>0 and MPsd60 Lie subalgebras of MPsd
Group corresponding to MPsd<0:

K<0 = {m = 1 +
∑
j<0

mj∂
j | mj ∈ Mn(R)}

Group corresponding to MPsd60:

K60 = {m =
∑
j60

mj∂
j | mj ∈ Mn(R),m0 ∈ Mn(R)∗}
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Hierarchies 1

Let R0 := {r ∈ R | ∂(r) = 0} be as before.
Choose a maximal commutative subalgebra h of Mn(k).
Examples of choices: h = diagonal matrices or e.g.

h =


h =

k−1∑
i=0

aiB i with B =



0 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 1
0 . . . . . . 0 0




Basic commutative algebra in MPsd>0:

R0 ⊗k h[∂] = {
∑
i>0

r∑
α=1

hiαEα∂ i , hiα ∈ R0},

where {Eα | 1 6 α 6 r} is a k-basis of h.
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Hierarchies 2

Basic generators of R0 ⊗k h[∂] the (∂, {Eα | 1 6 α 6 r}).

Basic commutative algebra in MPsd>0:

R0 ⊗k h[∂]>0 = {
∑
i>1

r∑
α=1

hiαEα∂i , hiα ∈ R0}

Basic generators of R0 ⊗k h[∂]>0 the {Eα∂ | 1 6 α 6 r}.
Algebraic relations:

EαEβ =
r∑

γ=1

hαβγEγ , Id =
r∑

γ=1

iγEγ , [∂,Eγ ] = 0
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Hierarchies 3

For the decomposition MPsd = MPsd>0 ⊕MPsd<0, we
consider deformations of the basic generators by the group
K<0 corresponding to MPsd<0, i.e.

L = K∂K−1 = ∂ +
∑
i<0

l1−i∂
i

Uα = KEαK−1 = Eα +
∑
i<0

uαi∂
i , where

K = Id +
∑
j<0

kj∂
j

The (L, {Uα}) satisfy the original algebraic relations:

UαUβ =
r∑

γ=1

hαβγUγ , Id =
r∑

γ=1

iγUγ , [L,Uγ ] = 0
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Hierarchies 4

All LiUβ, i > 0 and 1 6 β 6 r , commute with L and Uα.

Consider derivations ∂iβ : R → R, all commuting with ∂.

Search for deformations (L, {Uα}) that satisfy for all
i > 0 and 1 6 β 6 r , also the Lax equations:

∂iβ(L) = [(LiUβ)>0, L] =: [Biβ, L],

∂iβ(Uα) = [(LiUβ)>0,Uα] =: [Biβ,Uα].

The data (R, ∂, {∂iβ}) is a setting for the h-hierarchy.

Such (L, {Uα}) are solutions of the h-hierarchy in this setting.

Trivial solution: (L, {Uα}) = (∂, {Eα})
h diagonal matrices: h-hierarchy = multicomponent KP

Theorem All the {Biβ} satisfy zero curvature relations.
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Hierarchies 5

For the decomposition MPsd = MPsd>0 ⊕MPsd60, we
consider deformations of the basic generators by the group
K60 corresponding to MPsd60, i.e.

Vα = KEα∂K−1, where K =
∑
j60

kj∂
j , k0 ∈ Mn(R)∗

Let M :=
∑r

α=1 iαVα, then M = K∂K−1, K as above.
The {Vα} and M satisfy the original algebraic relations:

VαVβ =
r∑

γ=1

hαβγVγM, [Vα,Vβ] = 0, [M,Vγ ] = 0

In particular, all M i−1Vβ, i > 1 and 1 6 β 6 r , commute with
all the Vα.
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Hierarchies 6

Consider again derivations ∂iβ : R → R, commuting with ∂.

Search for deformations {Vα} that satisfy for all
i > 1 and 1 6 β 6 r , also the Lax equations:

∂iβ(Vα) = [(M i−1Vβ)>0,Vα] =: [Ciβ,Vα].

The data (R, ∂, {∂iβ}) is a setting for the strict h-hierarchy.

Such {Vα} are solutions of the strict h-hierarchy.

Trivial solution: {Vα} = {Eα∂}
Note that for all α:

∑r
β=1 iβ∂1β(Vα) = [∂,Vα] = ∂(Vα).

Theorem All the {Ciβ} satisfy zero curvature relations.
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Linearizations 1

Linearization of the h-hierarchy: find for deformations
(L, {Uα}) a function Φ s.t.

LΦ = zΦ, UαΦ = ΦEα, (3)

∂iβ(Φ) = BiβΦ with Biβ = (LiUβ)>0. (4)

Linearization of the strict h-hierarchy: find for deformations
{Vα} a function Ψ s.t.

VαΨ = zΨEα (5)

∂iβ(Ψ) = CiβΨ (6)

with Ciβ = (M i−1Vβ)>0 and M :=
r∑

α=1

iαVα.
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Linearizations 2

The linearization can give the Lax equations:

∂iβ(VαΨ− zΨEα) = ∂iβ(Vα)Ψ + Vα∂iβ(Ψ)− z∂iβ(Ψ)Eα
= ∂iβ(Vα)Ψ + VαCiβΨ− zCiβΨEα
= (∂iβ(Vα)− [Ciβ,Vα])Ψ

= 0

Scratching Ψ yields the Lax equations of the strict h-hierarchy.

Similarly, applying ∂iβ to the equations (3) and using (4)
yields the Lax equations of the h-hierarchy, if one can scratch
Φ from the final equation.
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Linearizations 3

For (∂, {Eα}), the linearization becomes

∂Φ0 = zΦ0, EαΦ0 = Φ0Eα, (7)

∂iβ(Φ0) = Eβ∂iΦ0 = Eβz iΦ0. (8)

From (8), Φ0 = exp(
∑∞

i=0
∑r

β=1 tiβEβz i ), ∂iβ = ∂
∂tiβ

Consider now perturbations of the trivial solution Φ0:

M(Φ0) = {m(z).Φ0 =

 N∑
j=−∞

mjz j

 .Φ0 | mj ∈ Mn(R) for all j},

where the product m(z).Φ0 of power series in z is formal.
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Linearizations 4

M(Φ0) is a MPsd-module on which also each ∂iβ acts:

m1(z).Φ0 + m2(z).Φ0 := (m1(z) + m2(z)).Φ0.

m
(∑N

j=−∞mjz j
)
.Φ0 :=

(∑N
j=−∞mmjz j

)
.Φ0, m ∈ Mn(R).(∑N

j=−∞mjz j
)
.Φ0Eα :=

(∑N
j=−∞mjEαz j

)
.Φ0.

∂iβ(m(z).Φ0) :=
(∑N

j=−∞ ∂iβ(mj)z j
)
.Φ0 + (m(z)Eβz i ).Φ0

∂(m(z).Φ0) :=
(∑N

j=−∞ ∂(mj)z j
)
.Φ0 + (m(z)z).Φ0

In particular,
∑N

j=−∞mj∂
j(Φ0) =

(∑N
j=−∞mjz j

)
.Φ0

Hence, M(Φ0) is a free MPsd-module with generator Φ0 and
to “scratch the Φ” one needs a Φ in the linearization that is a
generator of M(Φ0).
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Linearizations 5

For the {Eα∂}, the linearization becomes

Eα∂Ψ0 = zΨ0Eα ⇒ ∂Ψ0 = zΨ0 (9)

∂iβ(Ψ0) = Eβ∂ iΨ0 = Eβz iΨ0 (10)

From (10), Ψ0 = exp(
∑∞

i=1
∑r

β=1 tiβEβz i ), ∂iβ = ∂
∂tiβ

Consider now perturbations of the trivial solution Ψ0:

M(Ψ0) = {m(z).Ψ0 =

 N∑
j=−∞

mjz j

 .Ψ0 | mj ∈ Mn(R) for all j},

where the product m(z).Ψ0 of power series in z is formal.
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Linearizations 6

On M(Ψ0) one defines a left Psd-Module structure, a right
multiplication with the {Eα} and an action of the {∂iβ},
similar to that on M(Φ0).

In particular, M(Ψ0) is also a free MPsd-module with
generator Ψ0 and to “scratch the Ψ” one needs a Ψ in the
linearization that is a generator of M(Ψ0). E.g. any element

Ψ =

 N∑
j=−∞

mjz j

 .Ψ0, with mN ∈ Mn(R)∗,

will suffice.
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Solutions 1

Let k = C and S1 the unit circle in C∗.
Consider the Hilbert space H = L2(S ,Cn).

All elements of H can be described by their Fourier series

H = {f (z) | f (z) =
∑
m∈Z

amzm, am ∈ Cn}

H decomposes as H = H<0 ⊕ H>0, where

H<0 = {f (z) ∈ H | f (z) =
∑
m<0

amzm, am ∈ Cn}

H>0 = {f (z) ∈ H | f (z) =
∑
m>0

amzm, am ∈ Cn}

Orthogonal projections on H<0, resp. H>0: p<0 resp. p>0.
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Solutions 2

Grassmanian Gr(H) consists of

W closed subspace of H

p<0 : W → H<0 is a Fredholm operator

p>0 : W → H>0 is a Hilbert-Schmidt operator

As a variety GrH) isomorphic to GLres(H)/P, where

GLres(H) = {g ∈ GL(H) | g =
(

a b
c d

)
,

a, d Fredholm
b, c Hilbert-Schmidt

}

P = {p ∈ GLres(H) | p =
(

a 0
c d

)
, a, d invertible operators }
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Solutions 3

Let U be open connected neighborhood of S1

Γ(U): analytic maps γ : U → h s.t.

det(γ(u)) 6= 0 for all u ∈ U.

Γ is the direct limit of the {Γ(U)}.
Γss = {γ ∈ Γ, γ(u) ∈ hss all u ∈ U}, hss semi-simple part of h.
Theorem: There is a subgroup ∆ of Γss s.t.

Γ = Γ>0∆Γ<0, with Γ>0 ∩∆ = Γ<0 ∩∆ = Id,

where

Γ>0 = {exp(
∞∑
i=0

r∑
β=1

tiβEβz i )}, and

Γ<0 = {Id +
∑
j<0

γjz j , γj ∈ h for all j < 0.}
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Solutions 4

Similarly, we have Γ = Γ>0∆Γ60, with

Γ>0 = {exp(
∞∑
i=1

r∑
β=1

tiβEβz i )}, and Γ60 = {
∑
j60

γjz j ∈ Γ}

For the diagonal matrices:

∆ = {


zk1 0 · · · 0

0 zk2
. . .

...
...

. . . . . . 0
0 · · · 0 zkn

 , all ki ∈ Z}

It is convenient to let Γ act from the right on H.
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Solutions 5

For W ∈ Gr(H) and δ ∈ ∆, consider the sets

∆W ,>0 = {δ ∈ ∆ | there is a γ ∈ Γ>0 such that
p>0 : W δ−1γ−1 → H>0 is bijective

}, resp.

∆W ,>0 = {δ ∈ ∆ | there is a γ ∈ Γ>0 such that
p>0 : W δ−1γ−1 → H>0 is bijective

}.

For δ ∈ ∆W ,>0, we have the open subset of Γ>0:

Γ>0(δ,W ) = {γ ∈ Γ>0 | p>0 : W δ−1γ−1 → H>0 bijection}

For δ ∈ ∆W ,>0, there is the open part of Γ>0:

Γ>0(δ,W ) = {γ ∈ Γ>0 | p>0 : W δ−1γ−1 → H>0 bijection}

In the Deco(I)-case we choose the algebra of coefficients R
equal to the holomorphic functions on Γ>0(δ,W ) and in the
Deco(II)-case those that are holomorphic on Γ>0(δ,W ).
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Solutions 6

Theorem: For W ∈ Gr(H) and δ ∈ ∆W ,>0, there is a
Φδ

W ∈ M(Φ0) of the form

Φδ
W = K δ

W .δ.Φ0, with K δ
W = Id +

∑
i<0

ki∂
i .

such that Φδ
W and the pseudo differential operators

LδW := K δ
W ∂(K δ

W )−1 and the (Uδ
W )α := K δ

W Eα(K δ
W )−1

satisfy the linearization of the h-hierarchy. In particular the
(LδW , {(Uδ

W )α}) are a solution of the h-hierarchy.

G.F. Helminck Matrix hierarchies



Solutions 7

Theorem: For W ∈ Gr(H), a set of n linear independent vectors
{wi} in W and a δ ∈ ∆W ,>0, there is a Ψδ

W ,{wi} ∈ M(Ψ0) of the
form

Ψδ
W ,{wi} = K δ

W ,{wi}.δ.Ψ0, with K δ
W ,{wi} =

∑
i60

ki∂
i , k0 ∈ Mn(R)∗,

such that Ψδ
W ,{wi} and the pseudo differential operators

(V δ
W ,{wi})α := K δ

W ,{wi}Eα∂(K δ
W ,{wi})

−1

satisfy the linearization of the strict h-hierarchy. In particular the
{(V δ

W ,{wi})α} are a solution of the strict h-hierarchy.
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THANK YOU FOR YOUR ATTENTION
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