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@ Goals of this talk:

@ First, we present various examples of sets of compatible Lax

equations in the algebra MPsd of matrix pseudo differential
operators. On one hand these systems depend of the choice of
a maximal commutative algebra h in M,(k), where k =R or
k = C. On the other hand the form of the equations of the
system depends of different decompositions of MPsd. We treat
two examples of such decompositions.

Secondly, we show in the complex case how one can construct
solutions of these systems starting from infinite dimensional
varieties. For the first decomposition, we use a Grassmannian
of a suitable Hilbert space and for the second we need a fiber
bundle over this Grassmannian.
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Scalar case 1

Example: KP hierarchy

R commutative k-algebra, k = R, C,

0: R — R, k-linear derivation

R[0] differential operators in O with coefficients from R.
R[0] = {>.7_, 20", a; € R}, where

Za@’ r»—>2a, ),r€R

R[0] k-algebra, multiplication a =3 _; a;) and b= 3", b;0'

ab _Zgzoajas by,
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Scalar case 2

o We require now:

Assumption: {9’ | i > 0} are R-linear independent in R[)].

e Example: R = Ry[x] with Ry a k-algebra, 0 = d%.

o Assumption = R[0] has an extension Psd=R[0,07!), the
algebra of pseudo differential operators consisting of

N
R[0,07Y) = {p= Z pjaj,pj € R}.

j=—0c0
o If one uses for each n € Z, the notation

<Z> _ n(n—1)~/‘(!(n—k+1)’

then same formula for multiplication in R[9,07!) as in R[0)].
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Scalar case 3

e Notations in Psd: if p = Zszfoo pi®¥ € R[0,071), then

p>0 = Zpﬁ’ pco=Y pd

j<0

Psd>o = {p | p = p>o} Lie subalgebra of Psd.
Psd<o = {p| p = p<o} Lie subalgebra of Psd.
Psd= Psd>¢ @ Psd<g

Group corresponding to Psdq:

Keao={p=1+>_ pd |p€R}

Jj<0
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Scalar case 4

e Consider the k-subalgebra Ry := {r € R | 9(r) = 0} of R.
Ro[0] is a maximal commutative k-subalgebra of R[J].
Deformations of Ry[0]: Ro[KOK 1], K € K.
L=KOK1=0+ho ! +lo. - generator of Ry[L].

Any k-linear derivation A : R — R commuting with O defines
a k-linear derivation of Psd by

N N

ALY p)= > B

j==00 j==00

Let {0; | i = 1} be a set of k-linear derivations of R
commuting with 0.

o The data (R, 0,{0;}) is a setting for the KP hierarchy.
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Scalar case b

e Example: R = k[tj] or k[[tj]], Oi = 8% and 0 =04

@ Search for deformations L s.t.
Oi(L) = [(LNso, L] = [Bj, L], all i > 1 (1)

@ Since By = 0, there holds then 0;(L) = 9(L).
@ L solution of the KP hierarchy in this setting.

@ The system (1) is compatible, i.e. it satisfies
ail(Biz) - aiZ(Bil) - [Bila Bi2] =0, (2)

zero curvature relations.
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e (R,0) as above. Action of @ on R" and M,(R):
al 8(a1)

o@=a(l : N=| = and 9({m;;}) = {0(mj)}.
an d(an)

@ 0: My(R) — Mp(R) k-linear derivation.
o Differential operators in 0, coefficients from M,(R):

Ma(R)[O] = {>_ mid', mi € Ma(R)}
i=0
e Action of M,(R)[0] on R":

n . n .
Z m;0' : 33— Y m;0'(3)
i=0 i=0
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e Examples of Lax equations in M,(R)[J]:
AKNS equations, Nonlinear wave equation

@ Again we require :
Assumption: M,(R)[9] acts faithfully on R".

o Then M,(R)[0] C Mn(R)[0,01)=:MPsd, the algebra of
matrix pseudo differential operators:

N
MPsd = {m = Z mjaj7 m; € Mn(R)}

j==o00

@ Addition and multiplication rules as in Psd.
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e Two decompositions in MPsd. First, the case Deco(l):
MPsd = MPsd>o & MPsdg

MPsd>g = {m | m = m>o} Lie subalgebra of MPsd.
MPsd<o = {m | m = m.o} Lie subalgebra of MPsd.
Second decomposition, the Deco(ll)-case:

MPsd = MPsds¢ @ MPsd¢g
MPsdso and MPsd¢g Lie subalgebras of MPsd
Group corresponding to MPsdq:

Keo={m=1+)_ mid/ | m; € Ma(R)}
Jj<0

e 6 o

@ Group corresponding to MPsd«o:
Keo={m=>_ md | mj € Ma(R), mo € My(R)"}

J<0
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o Let Ry :={r € R|J(r) =0} be as before.
@ Choose a maximal commutative subalgebra h of M,(k).
@ Examples of choices: h = diagonal matrices or e.g.

01 0 ...0
k-1 0
h=qh=> aB with B= 0
i=0
0 ... ... 00

@ Basic commutative algebra in MPsd>q:

Ro @k h[0] ={) > hiaEad’, hia € Ro},

i20 a=1
where {E, | 1 < a < r} is a k-basis of h.
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@ Basic generators of Ry ® h[0] the (0,{E, |1 < a < r}).

@ Basic commutative algebra in MPsd:

r
Ro @ h[d]s0 ={D) > hiaEad’, hia € Ro}
izl a=1
e Basic generators of Ry ® h[0]s0 the {E,0 |1 < a < r}.
o Algebraic relations:

r

EaEs = hapyEy, 1d=> iE, [0,E]=0
v=1 y=1
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@ For the decomposition MPsd = MPsd>q @ MPsd«g, we
consider deformations of the basic generators by the group
Ko corresponding to MPsdg, i.e.

L=KOK =0+ Z L0

i<0
U, =KE,K'=E,+ Z Uai®', where
i<0
K=Id+)_ ko
Jj<0

o The (L,{U,}) satisfy the original algebraic relations:

r

r
UaUs = hagyUy, [d=>"0Uy, [L U] =0
y=1 y=1
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o All LiUg,i >0and 1 <6 < r, commute with L and U,,.
o Consider derivations 0;3 : R — R, all commuting with 0.

@ Search for deformations (L, {U,}) that satisfy for all
i>0and 1< B <r, also the Lax equations:

9ip(L) = [(L'Up)>0, L] =: [Big, L],
9:5(Ua) = [(L'Us)0, Ua] =: [Big, Ual-

The data (R, 0,{0is}) is a setting for the h-hierarchy.

Such (L, {U,}) are solutions of the h-hierarchy in this setting.
Trivial solution: (L,{Us}) = (9,{Ea})

h diagonal matrices: h-hierarchy = multicomponent KP

Theorem All the {B;3} satisfy zero curvature relations.
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@ For the decomposition MPsd = MPsd~q & MPsd<g, we
consider deformations of the basic generators by the group
K<o corresponding to MPsd, i.e.

Vo = KE,OK ™, where K =" ki/, ko € Mn(R)*
Jj<0

o Let M:=>"_,i,V,, then M = KOK™1, K as above.
e The {V,} and M satisfy the original algebraic relations:

VaVs =Y hagy VuM, [Va, V5] =0, [M,V,] =0
y=1

o In particular, all M=V, i > 1 and 1 < 3 < r, commute with
all the V.
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Consider again derivations 9;3 : R — R, commuting with 0.

Search for deformations {V,,} that satisfy for all
i>1and 1< <r, also the Lax equations:

ai,H(\/oz) = [(Miil Vﬂ)>0’ Va] = [Ciﬁ7 Va]'

The data (R, 0,{0i3}) is a setting for the strict h-hierarchy.
Such {V,} are solutions of the strict h-hierarchy.

Trivial solution: {V,} = {E,0}

Note that for all a: > 5 ig015(Va) = [0, Va] = O(Va).

Theorem All the {Cj3} satisfy zero curvature relations.

e 6 66 o6 o
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Linearizations 1

o Linearization of the h-hierarchy: find for deformations
(L,{U,}) a function ¢ s.t.

Lo =20, Upy® = DE,, (3)
8,-5(4)) = B,’ﬁq) with B;ﬁ = (LiUﬁ)>0. (4)

@ Linearization of the strict h-hierarchy: find for deformations
{V,} a function V¥ s.t.

VoW = zVE, (5)
9ip(V) = CigV (6)
with Gig = (M™'Vg)s0 and M=) o Va.

a=1
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Linearizations 2

@ The linearization can give the Lax equations:

B,-ﬁ(va\ll — Z\UEa) = 8,-g(Va)\U + Vaa,-ﬁ(\ll) - Z@,’g(W)Ea
= 8;g(va)w + Vo, C,'gw — ZC,'g‘UEa
= (9ip(Va) = [Cip, Vo))V
=0

@ Scratching W yields the Lax equations of the strict h-hierarchy.

e Similarly, applying 0;3 to the equations (3) and using (4)
yields the Lax equations of the h-hierarchy, if one can scratch
® from the final equation.
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Linearizations 3

o For (0,{E,}), the linearization becomes
0Py = z0g, E D¢ = PoE,, (7)
Dip(®o) = Egd'®o = Ez'bo. (8)

_ i _ 0
o From (8), & = exp(3_720 > 51 tisEpz'), 0is = 5¢;
o Consider now perturbations of the trivial solution ®g:

N
M(®o) = {m(2).90 = [ > mz/ | .09 | mj € Mn(R) for all j},

j=—c0

where the product m(z).®g of power series in z is formal.
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Linearizations 4

e M(®) is a MPsd-module on which also each ;g acts:
ml(z).¢o + mQ(Z).(bO = (ml(z) + m2(2)).¢0.

m(Sf o mizl) @0 = (S mm;zl) b0, m € Mo(R).
(Z,-N:m mjzf) BoE, = (Z,-N:m ijazj) .
Dip(m(z).90) i= (L), Dia(m;)2T) @0 + (m(2)Exz') Do
O(m(2)-90) = (S Dmy)2T ) @0 + (m(2)z). 00

In particular, ZJ-N:_OO m;¥(Po) = (ZJ.N:_OO mjzj) ol

Hence, M(®g) is a free MPsd-module with generator ®y and
to “scratch the ®” one needs a ® in the linearization that is a
generator of M(®p).

(]
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Linearizations 5

e For the {E,0}, the linearization becomes
E 0Vy = zVoE, = 0Vy = zVg (9)
9ip(Wo) = Eg0'Vy = Egz' W (10)

e From (10), Wy = exp(d>_72; Z,reﬂ tigEpz'), 0i5 = %

o Consider now perturbations of the trivial solution Wq:

N
M(Wo) = {m(z)Wo = | Y  mz | Wo | m; € Ma(R) for all j},

j=—00

where the product m(z). Wy of power series in z is formal.
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Linearizations 6

@ On M(Wy) one defines a left Psd-Module structure, a right
multiplication with the {E,} and an action of the {0;3},
similar to that on M(®y).

o In particular, M(Wy) is also a free MPsd-module with
generator Wy and to “scratch the W one needs a ¥ in the
linearization that is a generator of M(Wy). E.g. any element

V= Z m;z | Wy, with my € M,(R)*,

will suffice.
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Solutions 1

o Let k = C and S? the unit circle in C*.
o Consider the Hilbert space H = L2(S,C").

@ All elements of H can be described by their Fourier series

H={f(z = amz™, am € C"}

meZ

@ H decomposes as H = H.o @& H>g, where

Heo={f(z) eH|f(2) =) amz"™,am € C"}

m<0

Heo={f(z) €H|f(z) =) amz™,am € C"}

m>0

e Orthogonal projections on Hg, resp. H>o: p<g resp. p>o.
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Solutions 2

o Grassmanian Gr(H) consists of

W closed subspace of H
p<o : W — H_g is a Fredholm operator

p>o : W — Hxg is a Hilbert-Schmidt operator
@ As a variety GrH) isomorphic to GL.s(H)/P, where

a b a, d Fredholm
Glres(H) = {g € GL(H) | g = (c d) " b, ¢ Hilbert-Schmidt }

P={pe€ GLes(H) | p= (i 2) ,a,d invertible operators }
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Solutions 3

@ Let U be open connected neighborhood of $;
e I'(U): analytic maps v : U — hs.t.

det(y(u)) # 0 for all u € U.

o [ is the direct limit of the {I'(U)}.
o s ={y €Tl v(u) €hg all ue U}, hg semi-simple part of h.
@ Theorem: There is a subgroup A of ¢ s.t.

[=T0Al <, with T5oNA =ToNA = Id,

where

0= {exp(z Z tigEsz')}, and

i=0 =1
Fco={ld+> 7z, €hforallj<0}

Jj<0
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Solutions 4

@ Similarly, we have I = 5 oAl ¢, with

Mo = {exp(z Z tigEsz')}, and To = {Z vz er}

i=1 g=1 j<0

@ For the diagonal matrices:

i 0
0 zk
A={ , all ki e Z}
: - .0
0 0 an

@ It is convenient to let " act from the right on H.
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Solutions 5

e For W € Gr(H) and 6 € A, consider the sets

there is a v € '>g such that

Awzo={0€A] pso: W& 1y~ — Hyg is bijective

}, resp.

Bweo=renl e e |
@ For 6 € A >0, we have the open subset of [>:

M20(8, W) = {y € T>0 | pxo : W6 'y~ — Hx bijection}
@ For 6 € A ~o, there is the open part of I'-q:

>0(8, W) ={y € Ts0 | pso : W6 'y~ — Ho bijection}

@ In the Deco(l)-case we choose the algebra of coefficients R
equal to the holomorphic functions on '>o(6, W) and in the
Deco(ll)-case those that are holomorphic on '~o(6, W).

G.F. Helminck Matrix hierarchies



Solutions 6

Theorem: For W € Gr(H) and 6 € A >q, there is a
CD“S/V € M(®g) of the form

oYy = Kiy.8.00, with Ky =1d+ ) kid'".
i<0

such that CD‘lS/V and the pseudo differential operators
LY, = K5,0(KG,) ™ and the (U)o = Kby Ea(KY)) ™t

satisfy the linearization of the h-hierarchy. In particular the
(LS, {(U{))a}) are a solution of the h-hierarchy.
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Solutions 7

Theorem: For W € Gr(H), a set of n linear independent vectors
{wj} in WandaéeAwo, there is a \II“S/V’{W’_} € M(Wg) of the
form

Yy twiy = Kiv iy -6-Yo, with Ky (0 =~ kid', ko € Ma(R)",

i<0
such that \Il‘\s/v (w} and the pseudo differential operators

(Vv twy)a = Ky iy EaO(Ky 1) ™"

satisfy the linearization of the strict h-hierarchy. In particular the
{(v§, {W-})a} are a solution of the strict h-hierarchy.
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THANK YOU FOR YOUR ATTENTION
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