Higher Symmetries of the Schrödinger Operator

James Gundry - University of Cambridge

23/10/2015 - Workshop on Integrable Nonlinear Equations - Mikulov

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Higher Symmetries of the Laplacian

A rank-*n* symmetry of a linear differential operator Δ is a linear differential operator \mathcal{D}

$$\mathcal{D} = V_n^{a_1...a_n} \partial_{a_1}...\partial_{a_n} + V_{n-1}^{a_1...a_{n-1}} \partial_{a_1}...\partial_{a_{n-1}} + ... + V_1^{a_1} \partial_{a_1} + V_0$$

obeying

$$\Delta D = \delta \Delta$$

for some (otherwise irrelevant) linear differential operator δ . The highest-ranking tensor $V_n^{a_1...a_n}$ is referred to as the *symbol* of \mathcal{D} .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Higher Symmetries of the Laplacian

Theorems (Eastwood (2005))

A symmetry \mathcal{D} of the Laplacian Δ on Euclidean \mathbb{R}^n is canonically equivalent to one whose symbol is a conformal Killing tensor.

(...where two symmetries are equivalent if their difference is an operator of the form $P\Delta$ for any P.)

Given a conformal Killing tensor $V_n^{a_1...a_n}$ one can always uniquely solve for the lower-ranking tensors V_{n-1} , V_{n-2} , ..., V_0 such that \mathcal{D} is a symmetry of the Laplacian.

Thus Eastwood identifies the algebra of higher symmetries of Δ (up to equivalence) with the space of conformal Killing tensors on \mathbb{R}^n .

Higher Symmetries of the Schrödinger Operator

Now consider the symmetries \mathcal{D}_S of the free-particle Schrödinger operator

$$\Delta_{\mathcal{S}}=i\partial_t+\frac{1}{2m}\delta^{ij}\partial_i\partial_j.$$

These can be found in the literature: see Nikitin et al. (1992).

One useful approach is that of Bekaert et al. (2012), in which the symmetries of Δ_5 in d + 1 dimensions arise via a light-cone reduction from symmetries of the Laplacian Δ in d + 2dimensions.

$$\Delta = \delta^{ij} \partial_i \partial_j - 2\partial_+ \partial_-$$

$$\downarrow \text{ on } \psi(x^i, x^+) \exp \{-imx^-\} \downarrow$$

$$\Delta_S \psi(x^i, x^+) = (2im\partial_+ + \delta^{ij} \partial_i \partial_j) \psi$$

Higher Symmetries of the Schrödinger Operator

These considerations reveal that the higher symmetries \mathcal{D}_S of Δ_S are given by those conformal Killing tensors of

$$g = -2dx^+dx^- + \delta_{ij}dx^idx^j$$

which commute (via Schouten bracket) with

$$\xi = \frac{\partial}{\partial x^{-}}.$$

Components of the conformal Killing tensor in the x^- direction then appear at lower order in \mathcal{D}_S .

うして ふゆう ふほう ふほう ふしつ

Newton-Cartan Geometry

Definition (Cartan, (1923)): A Newton-Cartan spacetime is a (d + 1)-dimensional manifold M equipped with

- ▶ a symmetric tensor h of valence $\begin{pmatrix} 2\\ 0 \end{pmatrix}$ called the *metric*, degenerate with signature (0 + ... +);
- ► a closed one-form θ spanning the kernel of h called the *clock*;
- ▶ and a torsion-free affine connection ∇ satisfying $\nabla \theta = 0$ and $\nabla h = 0$.

We emphasise that the connection must be specified independently of h and θ : there is no non-relativistic analogue of the Levi-Civita connection.

Newton-Cartan Geometry

The most general connection ∇ has connection components

$$\Gamma^{a}_{bc} = \frac{1}{2}h^{ad}\left(\partial_{b}h_{cd} + \partial_{c}h_{bd} - \partial_{d}h_{bc}\right) + \partial_{(b}\theta_{c)}U^{a} + \theta_{(b}F_{c)d}h^{ad}$$

where

- U^a is any vector field satisfying $\theta(U) = 1$;
- F_{ab} is any two-form;
- and h_{ab} is the projective inverse of h uniquely determined by $h^{ab}h_{bc} = \delta^a_c - \theta_c U^a$ and $h_{ab}U^b = 0$.

There then exist gauge transformations of (U, F), called *Milne* boosts.

Newton-Cartan Symmetries

What is the Newton-Cartan analogue of a conformal Killing vector?

Lots of options... (see Duval & Horváthy, (2009))

conformal Galilean algebra

$$\mathcal{L}_X h = fh$$
 $\mathcal{L}_X \theta = g\theta$ (functions f, g)

conformal Newton-Cartan algebra

$$\mathcal{L}_{X}\Gamma^{a}_{bc} = -\partial_{t}f\delta^{a}_{(b}\theta_{c)} + (\partial_{t}f + \partial_{t}g)U^{a}\theta_{b}\theta_{c} + (f+g)h^{ad}\theta_{(b}F_{c)d}$$

...interesting to me because this algebra arises as $H^0(\mathcal{O} \oplus \mathcal{O}(2), \mathcal{T}(\mathcal{O} \oplus \mathcal{O}(2)))$ in Newtonian twistor theory.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Newton-Cartan Symmetries

Define the Schrödinger algebra by the extra constraint:

$$f + g = 0.$$
 $\mathcal{L}_X \Gamma^a_{bc} = -\partial_t f \delta^a_{(b} \theta_{c)}$

Now we have just projective transformations: we preserve the unparametrised geodesics of ∇ .

This algebra is the algebra of first-order symmetries of Δ_S . N.B. the famous "phase shift" is included in this treatment: one can always solve for the correct zeroth-order term.

Newton-Cartan Hamiltonian Formalism

Let (M, h, θ, ∇) be a Newton-Cartan spacetime with F = dA("*Newtonian*"). Geodesics of ∇ admit a Hamiltonian description: they are the projection to M of the integral curves on T^*M of the Hamiltonian vector field associated with the Hamiltonian

$$\mathcal{H} = rac{1}{2} h^{ab} \Pi_a \Pi_b - U^a \Pi_a$$

where $\Pi_a = p_a + A_a.$

This formalism, along with the canonical Poisson structure on T^*M , allows us to extend (some of!) the aforementioned vector-symmetries to *higher* symmetries.

Schrödinger-Killing Tensors

Definition

A rank-*n* Schrödinger-Killing tensor of a Newton-Cartan spacetime (M, h, θ, ∇) is a symmetric contravariant tensor field $X^{a_1...a_n}$ for which functions $\chi_m^{a_1...a_m}$ on M can be found obeying

$$\left\{ X^{a_1...a_n} p_{a_1}...p_{a_n} + \sum_{m=0}^{n-1} \chi_m^{a_1...a_m} p_{a_1}...p_{a_m} , \mathcal{H} \right\}$$

= $\sum_{m=0}^{n-1} (f_m^{a_1...a_m} p_{a_1...}p_{a_m}) \mathcal{H} ,$

where $f_m^{a_1...a_m}$ are symmetric tensor fields, and where $\{ \ , \ \}$ is the canonical Poisson structure on T^*M .

Theorem

A symmetry \mathcal{D}_{S} of the free-particle Schrödinger operator Δ_{S} is a linear differential operator which has a Schrödinger-Killing tensor of the flat Galilean Newton-Cartan spacetime

$$h = \delta^{ij} \partial_i \partial_j \qquad \theta = dt \qquad \Gamma^a_{bc} = 0$$

うして ふゆう ふほう ふほう ふしつ

as its symbol.

The proof follows from direct calculation.

Thank you for listening.

(中) (문) (문) (문) (문)