Decompositions of the group G(2)and related integrable hierarchies

Moscow

December 16, 2015

Outline of the talk

- The group G(2)
- Hierarchies
- The Lie algebra Psd
- The Lie algebra Ps∆
- Decompositions in $Ps\Delta$
- Decompositions in Psd
- The infinite Toda chain
- Compatible Lax equations
- Linearizations
- The geometric construction of solutions

The group G(2)

- \mathcal{H} Hilbert space with Hilbert basis $\{e_i \mid i \in \mathbb{Z}\}$.
- For each bounded operator $b: \mathcal{H} \to \mathcal{H}$, a $\mathbb{Z} \times \mathbb{Z}$ -matrix $[b] = (b_{ij})$ by the formula

$$b(e_j) = \sum_{i \in \mathbb{Z}} b_{ij} e_i.$$

- $S_2(\mathcal{H})$ ideal of Hilbert Schmidt operators, i.e. $A : \mathcal{H} \mapsto \mathcal{H}$ s.t. $||A||_2^2 := \operatorname{trace}(A^*A) = \operatorname{trace}(|A|^2) = \sum_{i \in \mathbb{Z}} \sum_{i \in \mathbb{Z}} |A_{ij}|^2 < \infty.$
- The relevant group in all cases is

$$G(2) = \left\{ g = (g_{ij}) \in \mathsf{GL}(\mathfrak{H}) \ \middle| \ g - \mathsf{Id} \in S_2(\mathfrak{H})
ight\}.$$

- $O(G(2)) = \{g \in G(2) \mid [g]^T[g] = \mathsf{Id}\}$
- If \mathcal{H} is complex, $U(G(2)) = \{g \in G(2) \mid [g]^*[g] = \mathsf{Id}\}.$

The group G(2) 2

• LU-decomposition in G(2): on dense, open subset g = LU

$$[L] = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{1} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & l_{n\,n-1} & \mathbf{1} & \mathbf{0} & \ddots \\ \ddots & l_{n+1\,n-1} & l_{n+1\,n} & \mathbf{1} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix},$$
$$[U] = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{u_{n-1\,n-1}} & u_{n-1\,n} & u_{n-1\,n+1} & \ddots \\ \ddots & \mathbf{0} & \mathbf{u_{n\,n}} & u_{n\,n+1} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{u_{n+1\,n+1}} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

The group G(2) 3

G(2)

• Gauss- or Iwasawa-decomposition: each $g \in G(2)$

Hierarchies Algebras Cauchy

 $g = o(g)b^+(g)$ real case, or $g = u(g)b^+(g)$ complex case, where $o(g) \in O(G(2)), u(g) \in U(G(2))$ and

 $[b^{+}(g)] = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \boldsymbol{b_{n-1}}_{n-1} & b_{n-1}n & b_{n-1}n+1 & \ddots \\ \ddots & 0 & \boldsymbol{b_n}n & b_{n}n+1 & \ddots \\ \ddots & 0 & 0 & \boldsymbol{b_{n+1}}n+1 & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$

, with all $b_{ii} > 0, i \in \mathbb{Z}$.

Hierarchies 1

- \bullet General set-up for hierarchies: Lie algebra $\mathfrak g$
- $\mathfrak{g}_i, i = 1, 2$, Lie subalgebras of \mathfrak{g}

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$$

- π_i the projection of \mathfrak{g} onto \mathfrak{g}_i induced by this decomposition
- \mathfrak{g}_2 Lie algebra of the Lie subgroup G_2
- Set linear independent, commuting elements:

$$\{F_j \mid j \ge 1\} \in \mathfrak{g}_1$$

• t_j flow parameter w.r.t. F_j , $\partial_j = \frac{\partial}{\partial t_j}$, $t = \{t_j\}$.

Hierarchies 2

• Search for $g_2(t)\in G_2$ such that the deformations

$$\mathfrak{F}_j := g_2(t)^{-1} F_j g_2(t), j \ge 1$$

satisfy for all $j_1 \ge 1$ and $j_2 \ge 1$:

$$\frac{\partial}{\partial t_{j_1}}(\mathcal{F}_{j_2}) = [\mathcal{F}_{j_2}, \pi_2(\mathcal{F}_{j_1})] = [\pi_1(\mathcal{F}_{j_1}), \mathcal{F}_{j_2}]$$
(1)

- The last equality in (1) follows from $[\mathcal{F}_{j_1}, \mathcal{F}_{j_2}] = 0$.
- (1): compatible Lax equations, for in practice it implies

$$\frac{\partial}{\partial t_{j_1}}(\pi_1(\mathfrak{F}_{j_2})) - \frac{\partial}{\partial t_{j_2}}(\pi_1(\mathfrak{F}_{j_1})) - [\pi_1(\mathfrak{F}_{j_1}), \pi_1(\mathfrak{F}_{j_2})] = 0,$$

a set of zero curvature relations.

Pseudo differential operators 1

• *R* k-algebra, $k = \mathbb{R}$ or \mathbb{C} , ∂ k-linear derivation of *R*.

•
$$R[\partial] = \{\sum_{i=0}^{n} a_i \partial^i, a_i \in R \text{ for all } i \ge 0\}$$

• Assume $\{\partial^n \mid n \ge 0\}$ *R*-linear independent. Then

 $R[\partial] \subset R[\partial, \partial^{-1}) = \operatorname{Psd},$ the pseudo differential operators .

Psd: extension of R[∂] with integral operators {∂^m | m < 0}.
For all m and n ∈ Z

 $\partial^n \partial^m = \partial^{n+m}$ and ∂^0 is the unit element.

Pseudo differential operators 2

Pseudo differential operators

$$\operatorname{Psd} = R[\partial, \partial^{-1}) = \{ p = \sum_{j=-\infty}^{N} p_j \partial^j, p_j \in R \},\$$

• Significant class of invertible elements in $R[\partial, \partial^{-1})$:

Lemma

Every scalar pseudo differential operator $P = \sum_{j \leq m} p_j \partial^j$, with $p_m \in R^*$, has an inverse P^{-1} of the form

$$P^{-1} = \sum_{i\leqslant -m} q_i \partial^i, \text{ with } q_{-m} = p_m^{-1}.$$

• Dressing $P \in R[\partial, \partial^{-1})$ with $B \in R[\partial, \partial^{-1})^*$: BPB^{-1} .

Pseudo differential operators 3

• Taking roots in Psd:

Lemma

Consider any monic pseudo differential operator

$$U = \partial^m + \sum_{i < m} u_{m-i} \partial^i$$

of order $m \ge 1$. There is a unique monic pseudo differential operator of order one

$$U^{\frac{1}{m}} = L = \partial + \sum_{i=0}^{\infty} \ell_{1+i} \partial^{-i},$$

with $U = (U^{\frac{1}{m}})^m$. We call $U^{\frac{1}{m}}$ the m-th root of U.

Pseudo difference operators 1

- Commutative k-algebra R, $k = \mathbb{R}$ or \mathbb{C} .
- *M*_ℤ(*R*) : ℤ × ℤ-matrices, coefficients from *R A* = (*a_{ii}*) ∈ *M*_ℤ(*R*) :

$$A = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & a_{n-1 \ n-1} & a_{n-1 \ n} & a_{n-1 \ n+1} & \ddots \\ \ddots & a_{n \ n-1} & a_{n \ n} & a_{n \ n+1} & \ddots \\ \ddots & a_{n+1 \ n-1} & a_{n+1 \ n} & a_{n+1 \ n+1} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Pseudo difference operators 2

• To $\{d(s)|s \in \mathbb{Z}\}$ in R is associated diag(d(s)):

$$\begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & d(n-1) & 0 & 0 & \ddots \\ \ddots & 0 & d(n) & 0 & \ddots \\ \ddots & 0 & 0 & d(n+1) & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

• Diagonal matrices:

$${\mathbb D}_1(R)=\{d={
m diag}(d(s))|d(s)\in R ext{ for all }s\in \mathbb{Z}\}.$$

Pseudo difference operators 3

Shift matrix Λ

$$\Lambda = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{1} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

• Action of the $\{\Lambda^m \mid m \in \mathbb{Z}\}$ on $\mathcal{D}_1(R)$:

$$\Lambda^m \mathrm{diag}(d(s)) \Lambda^{-m} = \mathrm{diag}(d(s+m)).$$

• Each $A = (a_{ij}) \in M_{\mathbb{Z}}(R)$: decomposes uniquely

$$A = \sum_{i \in \mathbb{Z}} d_i \Lambda^i, d_i \in \mathcal{D}_1(R)$$

Pseudo difference operators 4

• Lower triangular matrices

$$LT(R) = \{L \mid L = \sum_{i \leq N} \ell_i \Lambda^i, \ell_i \in \mathcal{D}_1(R)\}$$

• Each
$$L = \sum_{i \leq N} \ell_i \Lambda^i, \ell_N \in \mathfrak{D}_1(R)^*$$
, is invertible.

• Consider a
$$L_0 = \sum_{i \leq 1} \ell_i \Lambda^i, \ell_1 \in \mathcal{D}_1(R)^*$$
. Then:

$$L_0=K_0\Lambda K_0^{-1},$$

with $\mathcal{K}_0 = \sum_{i \leq 0} k_i \Lambda^i, k_i \in \mathfrak{D}_1(\mathcal{R}), k_0 \in \mathfrak{D}_1(\mathcal{R})^*$ and

$$LT(R) = \{P \mid P = \sum_{i \leq N} p_i L_0^i, p_i \in \mathcal{D}_1(R)\}$$

Pseudo difference operators 5

• Consider the invertible operator $\Delta:=\Lambda-\operatorname{Id}:$

$$\Delta\begin{pmatrix} \vdots \\ x_{n-1} \\ x_n \\ x_{n+1} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ x_n - x_{n-1} \\ x_{n+1} - x_n \\ x_{n+2} - x_{n+1} \\ \vdots \end{pmatrix}$$

 ${\, \bullet \,}$ For the difference operator Δ we have

$$\mathrm{Ps}\Delta = LT(R) = \{L \mid L = \sum_{i \leq N} \ell_i \Delta^i, \ell_i \in \mathcal{D}_1(R)\}$$

Elements of $Ps\Delta$ also called: *pseudo difference operators*.

Infinite Toda chain 1

• Particles on a straight line with nearest neighbour interaction:

- q_n is the displacement of the *n*-th particle, $n \in \mathbb{Z}$.
- Equations of motion in dimensionless form are described by

$$rac{dq_n}{dt}=p_n \ ext{and} \ rac{dp_n}{dt}=e^{-(q_n-q_{n-1})}-e^{-(q_{n+1}-q_n)}, \ n\in\mathbb{Z}.$$

• Put

$$a_n := rac{1}{2} e^{-(q_n - q_{n-1})}$$
 and $b_n := rac{1}{2} p_n.$

Infinite Toda chain 2

• Introduce the $\mathbb{Z} \times \mathbb{Z}$ -matrices L resp. B by

$$\begin{pmatrix} \ddots & \ddots & \ddots & & 0 \\ \ddots & \mathbf{b_{n-1}} & a_n & 0 & \ddots \\ \ddots & a_n & \mathbf{b_n} & a_{n+1} & \ddots \\ & 0 & a_{n+1} & \mathbf{b_{n+1}} & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}, \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & 0 \\ \ddots & \mathbf{0} & a_n & 0 & \ddots \\ \ddots & -a_n & \mathbf{0} & a_{n+1} & \ddots \\ & 0 & -a_{n+1} & \mathbf{0} & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}$$

• Equations of motion equivalent to:

$$\frac{dL}{dt} = -BL + LB = [L, B].$$

Decompositions in $Ps\Delta 1$

• Consider in *LT* the Lie subalgebra

$$LT_{\geqslant 0} := \{A = \sum_{0 \leqslant j \leqslant N} a_j \Lambda^j \mid ext{ all } a_j \in \mathcal{D}_1(R)\}$$

• We write $\pi_{\geq 0}$ for the projection of *LT* onto $LT_{\geq 0}$,

$$\pi_{\geqslant 0}(\sum_{-\infty\leqslant j\leqslant N}a_j\Lambda^j)=\sum_{0\leqslant j\leqslant N}a_j\Lambda^j.$$

- Similarly, we have the Lie subalgebras $LT_{<0}$, $LT_{\leqslant 0}$, $LT_{>0}$ and the respective projections $\pi_{<0}$, $\pi_{\leqslant 0}$ and $\pi_{>0}$.
- A $\mathbb{Z} \times \mathbb{Z}$ -matrix A for which there is an $N \ge 0$ such that

$$A = \sum_{-N \leqslant j \leqslant N} a_j \Lambda^j, a_j \in \mathcal{D}_1(R)$$
(2)

is called a **finite band** matrix in $M_{\mathbb{Z}}(R)$.

• This set of matrices is a Lie subalgebra and is denoted by FB.

Decompositions in $Ps\Delta 2$

 \bullet Inside ${\mathfrak{FB}}$ we have the antisymmetric matrices

$$\mathfrak{FB}_{as}(R) = \mathfrak{FB}_{as} = \{X \in \mathfrak{FB} \mid X^T = -X\}$$

• There is a natural projection π_{as} from LT to \mathcal{FB}_{as}

$$\pi_{\mathsf{as}}(\sum_{j\leqslant \mathsf{N}}\mathsf{a}_j\mathsf{A}^j)=\sum_{j\geqslant 1}(\mathsf{a}_j\mathsf{A}^j-\mathsf{A}^{-j}\mathsf{a}_j),$$

with $LT_{\leq 0}$ as a kernel.

- Note that at the infinite Toda chain, we had $\pi_{as}(L) = B$.
- This gives the following 3 decompositions of *LT*:

$$LT = LT_{\geq 0} \oplus LT_{<0},$$

$$LT = LT_{>0} \oplus LT_{\leq 0},$$

$$LT = \mathcal{FB}_{as} \oplus LT_{\leq 0}.$$

Decompositions in Psd 1

• First decomposition in Psd:

$$P = \sum_{j} P_{j} \partial^{j} = \sum_{j < 0} P_{j} \partial^{j} + \sum_{j \ge 0} P_{j} \partial^{j} = P_{<0} + P_{\ge 0}$$

 \bullet Lie algebra $\mathrm{Psd}=\mathrm{Psd}_{<0}\oplus\mathrm{Psd}_{\geqslant 0}=\mathfrak{g}_1\oplus\mathfrak{g}_2$

• Group corresponding to \mathfrak{g}_1

$$G_1 = \{g = 1 + \sum_{j < 0} g_j \partial^j, g_j \in R\}$$

Decompositions in Psd 2

• Second decomposition in Psd:

$$P = \sum_{j} P_{j} \partial^{j} = \sum_{j \leq 0} P_{j} \partial^{j} + \sum_{j > 0} P_{j} \partial^{j} = P_{\leq 0} + P_{> 0}$$

- \bullet Lie algebra decomposition $\mathrm{Psd}=\mathrm{Psd}_{\leqslant 0}\oplus\mathrm{Psd}_{>0}$
- \bullet Group corresponding to \mathfrak{g}_1

$${\mathcal G}_1=\{g=\sum_{j\leqslant 0}g_j\partial^j,g_j\in {\mathcal R},g_0\in {\mathcal R}^*\}$$

- Each decomposition starting point of a compatible set of Lax equations
- Given R , set $\{\partial_i \mid i \ge 1\}$ of commuting derivations of R
- Example: $R = k[t_i \mid i \ge 1]$ or $R = k[[t_i \mid i \ge 1]]$ and

$$\partial_i := \partial_{t_i} := \frac{\partial}{\partial t_i}$$

• Consider the first decomposition in $Ps\Delta$:

$$LT_{\geqslant 0}(\Lambda) \oplus LT_{<0}(\Lambda) = \operatorname{Ps}\Delta_{\geqslant 0} \oplus \operatorname{Ps}\Delta_{<0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2.$$

 $\bullet\,$ Group corresponding to $\mathfrak{g}_2=\mathrm{Ps}\Delta_{<0}\colon$

$$U_{-} = \{ \mathsf{Id} + B \mid B \in \mathrm{Ps}\Delta_{<0} \}$$

- Basic commuting directions : the $\{\Lambda^k \mid k \ge 1\}$
- Deformation of Λ:

$$\mathcal{L} = \Lambda + \sum_{i=1}^{\infty} d_i \Lambda^{1-i}, d_i \in \mathcal{D}_1(R).$$

• Examples: $\mathcal{L} = U \Lambda U^{-1}$, with $U \in U_{-}$.

• Let
$$\mathcal{B}_r := (\mathcal{L}^r)_{\geq 0}, r \geq 1$$
.

 \bullet Search for deformations ${\mathcal L}$ that satisfy:

$$\partial_{k_1}(\mathcal{L}^{k_2}) = [\mathcal{B}_{k_1}, \mathcal{L}^{k_2}] = [\mathcal{L}^{k_2}, \mathcal{L}_{\leqslant 0}^{k_1}], k_1 \text{ and } k_2 \geqslant 1.$$

 \bullet Sufficient the Lax equations for ${\cal L}$

$$\partial_{k_1}(\mathcal{L}) = [\mathcal{B}_{k_1}, \mathcal{L}] = [\mathcal{L}, \mathcal{L}_{<0}^{k_1}], k_1 \ge 1,$$

the Lower Triangular Toda (LTT)-hierarchy.

• For each solution \mathcal{L} the zero curvature relations hold:

$$\partial_{k_1}(\mathfrak{B}_{k_2}) - \partial_{k_1}(\mathfrak{B}_{k_1}) - [\mathfrak{B}_{k_1}, \mathfrak{B}_{k_2}] = 0, k_1 \text{ and } k_2 \geqslant 1.$$

• Next relevant decomposition in $Ps\Delta$:

 $LT_{>0}(\Lambda) \oplus LT_{\leqslant 0}(\Lambda) = \operatorname{Ps}\Delta_{>0} \oplus \operatorname{Ps}\Delta_{\leqslant 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2.$

 $\bullet\,$ Group corresponding to $\mathfrak{g}_2=\mathrm{Ps}\Delta_{\leqslant 0}\colon$

$$P_{-} = \{ d \operatorname{Id} + B \mid , d \in \mathcal{D}_{1}(R)^{*}, B \in \operatorname{Ps}\Delta_{<0} \}.$$

- Basic commuting directions : the $\{\Lambda^k \mid k \ge 1\}$.
- Deformation of Λ:

$$\mathfrak{M}=d_0 \Lambda+\sum_{i=1}^\infty d_i \Lambda^{1-i}, d_i\in \mathfrak{D}_1(R) ext{ and } d_0\in \mathfrak{D}_1(R)^st.$$

• Examples:
$$\mathfrak{M}=P\Lambda P^{-1},$$
 with $P\in P_{-1}$.

G(2) Hierarchies Algebras Cauchy

- Consider the cut-off's $\mathfrak{C}_r := (\mathfrak{M}^r)_{>0}, r \ge 1$.
- \bullet Search for deformations ${\mathcal M}$ that satisfy:

$$\partial_{r_1}(\mathcal{M}^{r_2}) = [\mathcal{C}_{r_1}, \mathcal{M}^{r_2}] = [\mathcal{M}^{r_2}, \mathcal{M}_{\leqslant 0}^{r_1}], r_1 \text{ and } r_2 \geqslant 1.$$

 \bullet Sufficient Lax equations for ${\mathcal M}$ the

$$\partial_{r_1}(\mathcal{M}) = [\mathcal{C}_{r_1}, \mathcal{M}] = [\mathcal{M}, \mathcal{M}_{\leq 0}^{r_1}], r_1 \ge 1,$$

the Strict Lower Triangular Toda (SLTT)-hierarchy.Consequence: *zero curvature relations*

$$\partial_{r_1}(\mathfrak{C}_{r_2}) - \partial_{r_2}(\mathfrak{C}_{r_1}) - [\mathfrak{C}_{r_1}, \mathfrak{C}_{r_2}] = 0, r_1 \text{ and } r_2 \geqslant 1.$$

• The last relevant decomposition in $\mathrm{Ps}\Delta\mathrm{:}$

 $\mathfrak{FB}_{\textit{as}} \oplus LT_{\leqslant 0} = \mathrm{Ps}\Delta_{\textit{as}} \oplus \mathrm{Ps}\Delta_{\leqslant 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2.$

• Group corresponding to $\mathfrak{g}_2 = \operatorname{Ps}\Delta_{\leqslant 0}$:

$$P_{-} = \{ d \operatorname{Id} + B \mid , d \in \mathcal{D}_{1}(R)^{*}, B \in \operatorname{Ps}\Delta_{<0} \}.$$

- Basic commuting directions : the $\{\Lambda^r \Lambda^{-r} \mid r \ge 1\}$.
- Commuting deformations of the $\{\Lambda^r \Lambda^{-r}\}$:

$$\mathfrak{F}_r = m_0 \Lambda^r + \sum_{i=1}^{\infty} m_i \Lambda^{r-i}, m_i \in \mathfrak{D}_1(R) \text{ and } m_0 \in \mathfrak{D}_1(R)^*.$$

• Examples: $\mathfrak{F}_r = P(\Lambda^r - \Lambda^{-r})P^{-1}$, with $P \in P_-$.

G(2) Hierarchies Algebras Cauchy

- Consider the cut-off's $\mathcal{E}_r := \pi_{as}(\mathcal{M}_r), r \ge 1$.
- Search for deformations \mathfrak{F}_r that satisfy:

$$\partial_{r_1}(\mathfrak{F}_{r_2}) = [\mathfrak{M}_{r_2}, \mathcal{E}_{r_1}] = [\pi^{\mathsf{c}}_{as}(\mathfrak{M}_{r_1}), \mathfrak{M}_{r_2}], r_1 \text{ and } r_2 \geqslant 1,$$

where $\pi_{as}^{c} = \operatorname{Id} - \pi_{as}$ is a projection on $LT_{\leq 0}$.

- This is called the Infinite Toda Chain (ITC)-hierarchy.
- These $\{-\mathcal{E}_r\}$ satisfy the zero curvature relations

$$\partial_{r_1}(\mathcal{E}_{r_2}) - \partial_{r_2}(\mathcal{E}_{r_1}) - [\mathcal{E}_{r_2}, \mathcal{E}_{r_1}] = 0, r_1 \text{ and } r_2 \ge 1.$$

- \mathcal{L} solution of the LTT-hierarchy, $\mathcal{A}_k := -(\mathcal{L}^k)_{<0}, k \geq 1$.
- Zero curvature relations for the $\{A_k \mid k \ge 1\}$:

$$\partial_{k_1}(\mathcal{A}_{k_2}) - \partial_{k_2}(\mathcal{A}_{k_1}) - [\mathcal{A}_{k_1}, \mathcal{A}_{k_2}] = 0, k_1 \text{ and } k_2 \ge 1.$$

- \mathcal{M} solution of the SLTT-hierarchy, $\mathcal{D}_r := -(\mathcal{M}^r)_{\leq 0}, r \geq 1$.
- Zero curvature for the $\{\mathcal{D}_r \mid r \ge 1\}$:

$$\partial_{r_1}(\mathcal{D}_{r_2}) - \partial_{r_2}(\mathcal{D}_{r_1}) - [\mathcal{D}_{r_1}, \mathcal{D}_{r_2}] = 0, r_1 \text{ and } r_2 \ge 1.$$

- $\{\mathfrak{F}_r\}$ solutions of ITC-hierarchy, $\mathfrak{G}_r := \pi^c_{as}(\mathfrak{F}_r), r \ge 1$.
- Zero curvature for the $\{\mathcal{G}_r \mid r \ge 1\}$:

$$\partial_{r_1}(\mathfrak{G}_{r_2}) - \partial_{r_2}(\mathfrak{G}_{r_1}) - [\mathfrak{G}_{r_1}, \mathfrak{G}_{r_2}] = 0, r_1 \text{ and } r_2 \geqslant 1.$$

- \mathcal{L} potential solution LTT-hierarchy, $\mathcal{A}_k := -(\mathcal{L}^k)_{<0}, k \ge 1$.
- Related Cauchy problem: find a $u \in U_{-}(R)$ s.t. for all $k \ge 1$

$$\partial_k(u) = \mathcal{A}_k u, \tag{3}$$

- \mathfrak{M} potential solution SLTT-hierarchy, $\mathfrak{D}_r := -(\mathfrak{M}^r)_{\leqslant 0}, r \geqslant 1.$
- Related Cauchy problem: find a $p \in P_{-}(R)$ s.t. for all $r \ge 1$

$$\partial_r(p) = \mathcal{D}_r p,$$
 (4)

- $\{\mathcal{F}_r\}$ potential solutions ITC-hierarchy
- Related Cauchy problem: find a $g \in P_-(R)$ s.t. for all $j \ge 1$

$$\partial_j(g) = \pi^c_{LT,as}(\mathcal{F}_j)g, \tag{5}$$

(2) Hierarchies Algebras Cauchy

Compatible Lax equations in Psd

- Decomposition $\operatorname{Psd} = \operatorname{Psd}_{<0} \oplus \operatorname{Psd}_{\geqslant 0} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$
- Deformation $L = \partial + \sum_{i \ge 1} \ell_{i+1} \partial^{-i}$, $B_k = (L^k)_{\ge 0}$
- Examples: $L = P\partial P^{-1}$, $P \in G_1, P = \mathsf{Id} + \sum_{i \ge 1} p_i \partial^{-i}$
- Assume R has a collection of k-linear derivations {∂_k | k ≥ 1}, all commuting with ∂
- Lax equations of the KP hierarchy

$$\partial_{k_1}(L^{k_2}) = [B_{k_1}, L^{k_2}] = [L^{k_2}, L^{k_1}_{<0}], k_1 \text{ and } k_2 \ge 1.$$

G(2) Hierarchies Algebras Cauchy

Compatible Lax equations in Psd 2

- \bullet Decomposition $\mathrm{Psd}=\mathrm{Psd}_{\leqslant 0}\oplus\mathrm{Psd}_{>0}=\mathfrak{g}_1\oplus\mathfrak{g}_2$
- Consider deformations

$$M=\partial+m_1+m_2\partial^{-1}+\cdots$$

• Examples:
$$M = P\partial P^{-1}$$
,
 $P \in G_1, P = p_0 + \sum_{i \ge 1} p_i \partial^{-i}, p_0 \in R^*$

•
$$R$$
 and $\{\partial_r \mid r \ge 1\}$ as above

• Let
$$C_r = (M^r)_{>0}, r \ge 1.$$

• Strict KP hierarchy for *M* and its powers:

$$\partial_{r_1}(M^{r_2}) = [C_{r_1}, M^{r_2}] = [M^{r_2}, M^{r_1}_{\leqslant 0}], r_1 \text{ and } r_2 \ge 1$$

• Linearization of LTT-hierarchy:

$$\mathcal{L}\varphi = \varphi \Lambda,$$

 $\partial_k(\varphi) = \pi_{\geqslant 0}(\mathcal{L}^k)\varphi$ for all $k \geqslant 1.$

• Linearization of SLTT-hierarchy:

$$egin{aligned} &\mathcal{M}\psi=\psi\mathsf{\Lambda}\ &\partial_r(\psi)=\pi_{>0}(\mathcal{M}^r)\psi ext{ for all }r\geqslant 1. \end{aligned}$$

• Linearization of ITC-hierarchy:

$$\mathfrak{F}_{j}\phi = \phi(\Lambda^{j} - \Lambda^{-j}) \text{ for all } j \ge 1,$$

 $\partial_{j}(\phi) = -\pi_{as}(\mathfrak{F}_{j})\phi \text{ for all } j \ge 1.$

 $\bullet\,$ For suitable φ,ψ,ϕ the linearization implies the Lax equations

$$\begin{split} \partial_{j_1}(\mathcal{F}_{j_2}\phi - \phi(\Lambda^{j_2} - \Lambda^{-j_2})) \\ &= \partial_{j_1}(\mathcal{F}_{j_2})\phi + \mathcal{F}_{j_2}(\partial_{j_1}(\phi)) - (\partial_{j_1}(\phi))(\Lambda^{j_2} - \Lambda^{-j_2}) \\ &= \partial_{j_1}(\mathcal{F}_{j_2})\phi - \mathcal{F}_{j_2}\pi_{as}(\mathcal{F}_{j_1})\phi + \pi_{as}(\mathcal{F}_{j_1})\phi(\Lambda^{j_2} - \Lambda^{-j_2}) \\ &= \{\partial_{j_1}(\mathcal{F}_{j_2}) - [\mathcal{F}_{j_2}, \pi_{as}(\mathcal{F}_{j_1})]\}\phi = 0. \end{split}$$

 φ, ψ, φ belong to a PsΔ-module of perturbations of the solution of the linearization corresponding to the trivial solutions of the hierarchies:

$$\mathcal{L} = \Lambda, \mathcal{M} = \Lambda, \mathfrak{F}_j = \Lambda^j - \Lambda^{-j}.$$

• For *LTT*- and *SLTT*-hierarchy:

$$\varphi_0 = \psi_0 = \exp(\sum_{k=1}^{\infty} t_k \Lambda^k)$$

• For *ITC*-hierarchy:

$$\phi_0 = \exp(\sum_{k=1}^{\infty} -t_k(\Lambda^k - \Lambda^{-k}))$$

- Appropriate $Ps\Delta$ -module for *ITC*-hierarchy: M(ITC).
- *M*(*ITC*) consists of formal products:

$$\{\ell\}\phi_0 = \{\sum_{j=-\infty}^{N} d_j \Lambda^j\} \exp(\sum_{j=1}^{\infty} -t_j (\Lambda^j - \Lambda^{-j})), \text{ where } \ell \in \mathsf{Ps}\Delta.$$

• Elements of *M*(*ITC*) are called *oscillating matrices*.

• $Ps\Delta$ -action on M(ITC):

$$\ell_1\{\ell_2\}\phi_0 = \{\ell_1\ell_2\}\phi_0.$$

• Right multiplication with $\{\Lambda^j-\Lambda^{-j}\}$

$$\{\ell\}\phi_0(\Lambda^j-\Lambda^{-j}):=\{\ell(\Lambda^j-\Lambda^{-j})\}\phi_0.$$

• Action of the derivations ∂_j on M(ITC):

$$\partial_j(\{\sum_{j=-\infty}^N d_j N^j\}\phi_0) = \{\sum_{j=-\infty}^N \partial_j(d_j) N^j\} - \sum_{j=-\infty}^N d_j N^j (N^j - \Lambda^{-j})\}\phi_0.$$

• M(ITC) is a free Ps Δ -module with generator ϕ_0

- An oscillating matrix $\phi = \hat{\phi}\phi_0$, with $\hat{\phi} = \sum_{i=-\infty}^{m} d_i \Lambda^i$, with d_m invertible, is called **a wave matrix** for the matrices $\{\mathcal{F}_j\}$, if it satisfies satisfies the linearization.
- The $\{\mathfrak{F}_j\}$ form then a solution of the *ITC*-hierarchy
- It even suffices to show:

Proposition

Let $\phi = \hat{\phi}\phi_0$, with $\hat{\phi} = \sum_{i=-\infty}^m d_i \Lambda^i$ and $d_m \in \mathcal{D}_1(R)$ invertible, be an oscillating matrix. If it satisfies for all $j \ge 1$

 $\partial_j(\phi) = G_j \phi$, with $G_j \in \mathfrak{FB}_{as}$,

then $G_j = -\pi_{as}(\mathcal{F}_j)$, where $\mathcal{F}_j := \hat{\phi}(\Lambda^j - \Lambda^{-j})\hat{\phi}^{-1}$. In particular the $\{\mathcal{F}_j\}$ form a solution to the ITC-hierarchy and ϕ is a wave matrix for this solution.

- To get the oscillating matrices of the *LTT* resp. *SLTT*-hierarchy, replace ϕ_0 by φ_0 , resp. ψ_0 .
- Wave matrices at the LTT-hierarchy have the form

$$\hat{\varphi}\varphi_0 = \{ \mathsf{Id} \, \mathsf{\Lambda}^{\mathsf{N}} + \sum_{j < \mathsf{N}} d_j \mathsf{\Lambda}^j \} \varphi_0$$

and lead to a solution $\mathcal{L} = \hat{\varphi} \Lambda \hat{\varphi}^{-1}$ of the *LTT*-hierarchy.

• Wave matrices at the SLTT-hierarchy have the form

$$\hat{\psi}\psi_{\mathsf{0}}=\{\sum_{j\leqslant \mathsf{N}}d_{j}\mathsf{\Lambda}^{j}\}\psi_{\mathsf{0}}, ext{ with } d_{\mathsf{N}} ext{ invertible}$$

and lead to a solution $\mathcal{M}=\hat{\psi}\Lambda\hat{\psi}^{-1}$ of the *SLTT*-hierarchy.

• Similar Propositions hold in the *LTT*- resp. *SLTT*-case.

• Linearization of the KP hierarchy:

$$L \varphi = \varphi z,$$

 $\partial_k(\varphi) = \pi_{\geq 0}(L^k) \varphi \text{ for all } k \geq 1.$

• Linearization of the strict KP hierarchy:

$$M\psi = \psi z$$

 $\partial_r(\psi) = \pi_{>0}(M^r)\psi$ for all $r \ge 1$.

• φ resp. ψ wave functions of the KP resp. strict KP hierarchy

$$arphi = \{1 + \sum_{i < 0} a_i z^i\} \exp(\sum_{k=1}^{\infty} t_k z^k) \text{ all } a_i \in R,$$

 $\psi = \{\sum_{i \leqslant 0} b_i z^i\} \exp(\sum_{k=1}^{\infty} t_k z^k), \text{ all } b_i \in R, b_0 \in R^*.$

To get Z × Z-matrices: take a Hilbert space H with Hilbert basis {e_i | i ∈ Z}. For each bounded operator b : H → H, a Z × Z-matrix [b] = (b_{ij}) by the formula

$$b(e_j) = \sum_{i \in \mathbb{Z}} b_{ij} e_i.$$

• Choice of $\mathcal H$ for 3 Ps Δ -hierarchies:

$$\mathcal{H} = \{ \vec{x} = \sum_{n \in \mathbb{Z}} x_n \vec{e}(n) \mid x_n \in \mathbb{R} \text{ or } \mathbb{C}, \ \sum_{n \in \mathbb{Z}} |x_n|^2 < \infty \}.$$

 \bullet We put the standard inner product on ${\mathcal H}$

$$< \vec{x} \mid \vec{y} > = \sum_{n \in \mathbb{Z}} x_n y_n \text{ or } < \vec{x} \mid \vec{y} > = \sum_{n \in \mathbb{Z}} x_n \overline{y}_n$$

• $\{ec{e}(n)\mid n\in\mathbb{Z}\}$ an orthonormal basis of $\mathcal H$

Geometric construction of solutions 2

• For each $b \in B(\mathcal{H})$,

$$b(\vec{x}) = [b]\vec{x} = M_{[b]}\vec{x},$$

where [b] is the matrix of b w.r.t. this basis

• For $j \geqslant 1$, operator norms of M_{Λ^j} and $M_{\Lambda^j - \Lambda^{-j}}$ satisfy

$$||M_{\mathcal{N}^j}|| = 1, ||M_{\mathcal{N}^j - \Lambda^{-j}}|| \leq 2.$$

• Choose our parameters $t = (t_j)$ out of the space

$$\ell_1(\mathbb{N}) = \{t = (t_j) \mid \text{ all } t_j \in \mathbb{R} \text{ or } \mathbb{C} \text{ and } \sum_{j=1}^{\infty} |t_j| < \infty\},$$

equipped with the norm $||t||_1 = \sum_{j=1}^{\infty} |t_j|$. • Define analytic maps $\gamma_{1,2}$ and γ_3 from $\ell_1(\mathbb{N})$ to $GL(\mathcal{H})$ by

$$\gamma_{1,2}(t) = \exp(\sum_{j=1}^{\infty} t_j M_{\Lambda^j}) \text{ resp. } \gamma_3(t) = \exp(\sum_{j=1}^{\infty} -t_j M_{\Lambda^j - \Lambda^{-j}})$$

Geometric construction of solutions 3

• Matrices van $\gamma_{1,2}(t)$ and $\gamma_3(t)$:

$$[\gamma_{1,2}(t)] = \exp(\sum_{i=1}^{\infty} t_i \Lambda^i), [\gamma_3(t)] = \exp(\sum_{i=1}^{\infty} -t_i (\Lambda^i - \Lambda^{-i}))$$

• Relevant group in all cases

$$G(2) = \left\{ g = (g_{ij}) \in \mathsf{GL}(\mathfrak{H}) \ \middle| \ g - \mathsf{Id} \in S_2(\mathfrak{H}) \right\},$$

where the ideal $S_2(\mathcal{H})$ of Hilbert Schmidt operators, consists of all bounded operators $A : \mathcal{H} \mapsto \mathcal{H}$ such that

$$||A||_2^2 := \operatorname{trace}(A^*A) = \operatorname{trace}(|A|^2) < \infty.$$

Geometric construction of solutions 4

• Each $b \in B(H)$ decomposes as $b = u_{-}(b) + p_{+}(b)$, with $[u_{-}(b)] = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & b_{n n-1} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & b_{n+1 n-1} & b_{n+1 n} & \mathbf{0} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix},$ $[p_{+}(b)] = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \boldsymbol{b_{n-1 \ n-1}} & b_{n-1 \ n} & b_{n-1 \ n+1} & \ddots \\ \ddots & 0 & \boldsymbol{b_{n \ n}} & b_{n \ n+1} & \ddots \\ \ddots & 0 & 0 & \boldsymbol{b_{n+1 \ n+1}} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$

• Relevant decomposition for LTT-hierarchy: for all $g \in \Omega$

$$g = u_{-}(g).b_{+}(g)$$

• Relevant decomposition for *SLTT*-hierarchy: for all $g \in \Omega$

$$g = b_{-}(g).u_{+}(g)$$

Basic decomposition for *ITC*-hierarchy: G(2) = B⁺_−O(G(2))
Each g ∈ G(2), g = b⁺_−(g).o(g).

For each g ∈ G(2), the following set is non-empty, open and dense

$$\{t\in \ell_1(\mathbb{N})\mid \gamma_{1,2}(t)g\gamma_{1,2}(t)^{-1}\in \Omega\}.$$

• In the LTT- and SLTT-case, choose the algebra of coefficients

$$R_g := C^\infty(\{t \in \ell_1(\mathbb{N}) \mid \gamma_{1,2}(t)g\gamma_{1,2}(t)^{-1} \in \Omega\}),$$

with the derivations $\partial_i = \frac{\partial}{\partial t_i}, i \ge 1$.

In the ITC-case we take

$$R_g := C^{\infty}(\ell_1(\mathbb{N})),$$

with the derivations $\partial_i = \frac{\partial}{\partial t_i}, i \geq 1$.

- Define $\Phi_1(t) = u_-(\gamma_{1,2}(t)g\gamma_{1,2}(t)^{-1}).[\gamma_{1,2}(t)].$
- Define $\Phi_2(t) = b_-(\gamma_{1,2}(t)g\gamma_{1,2}(t)^{-1}).[\gamma_{1,2}(t)].$
- Define $\Phi_3(t) = b_-^+(\gamma_3(t)g\gamma_3(t)^{-1})[\gamma_3(t)].$

Theorem

There holds:

- (a) Let $g \in G(2)$. Then Φ_1 is a wave matrix for the LTThierarchy and for each coset $gB_+ \in G(2)/B_+$ there is a \mathcal{L}_{gB_+} in Ps Δ that is a solution of the LTT-hierarchy.
- (b) Let $g \in G(2)$. Then Φ_2 is a wave matrix for the SLTThierarchy and for each coset $gU_+ \in G(2)/U_+$ there is a \mathcal{M}_{gU_+} in Ps Δ that is a solution of the SLTT-hierarchy.
- (c) Let $g \in G(2)$. Then Φ_3 is a wave matrix for the ITChierarchy and for each coset $gO(G(2)) \in G(2)/O(G(2))$ there is a set $\{(\mathfrak{F}_j)_{gU_+} \mid j \ge 1\}$ in Ps Δ that forms a solution of the ITC-hierarchy.

Geometric construction of solutions 8

• For $i \in \mathbb{Z}$, define the subspace

$$\mathcal{H}_i := \{\sum_{n \leq i} a_n \vec{e}_n \in \mathcal{H}\}.$$

• The $\{\mathcal{H}_i\}$ form the basic flag

$$\cdots \mathcal{H}_{i-1} \subset \mathcal{H}_i \subset \mathcal{H}_{i+1} \cdots,$$

corresponding to $Id B_+$.

• To gB_+ corresponds the flag $\mathcal{F}_{gB_+} = \{W_i = g\mathcal{H}_i\}$:

$$\cdots gH_{i-1} \subset gH_i \subset gH_{i+1} \cdots$$

• To gU_+ corresponds the flag $\mathcal{F}_{gB_+} = \{W_i = g\mathcal{H}_i\}$ and the basis $\{f_i\}$,

$$f_i \neq 0, f_i \in W_i/W_{i-1}.$$

• O(G(2)) is the fixed point set in G(2) of the involution $\sigma(g) = (g^T)^{-1}$. Thus G(2)/O(G(2)) is a symmetric space.

• Hilbert space for KP and strict KP:

$$H = \{\sum_{n \in \mathbb{Z}} a_n z^n \mid a_n \in \mathbb{C}, \sum_{n \in \mathbb{Z}} \mid a_n \mid^2 < \infty\},\$$

• Decomposition $H = H_{-} \oplus H_{+}$, where

$$H_- = \{\sum_{n < 0} a_n z^n \in H\} \text{ and } H_+ = \{\sum_{n \ge 0} a_n z^n \in H\}$$

 \bullet The inner product $<\cdot\mid\cdot>$ is given by

$$<\sum_{n\in\mathbb{Z}}a_nz^n\mid\sum_{m\in\mathbb{Z}}b_mz^m>=\sum_{n\in\mathbb{Z}}a_n\overline{b_n}.$$

• Relevant Grassmanian : $\operatorname{Gr}^{(0)}(H) = \{ gH_+ \mid g \in G(2) \}$

- Thus $Gr^{(0)}(H)$ equals the homogeneous space $G(2)/P_1$ with P_1 the stabilizer of H_+ in G(2).
- P_1 is w.r.t. the decomposition $H = H_- \oplus H_+$ given by

$$P_1 = \{g = \begin{pmatrix} g_{--} & 0 \\ g_{+-} & g_{++} \end{pmatrix} \in G(2)\}.$$

• G(2) acts on the pairs (W, ℓ) , where ℓ is a line in W, by

$$(W, \ell) \mapsto (gW, g\ell).$$

• The stabilizer P_2 of the pair $(H_+, < z^0 >)$ is given by

$$\{g \in P_1 \mid g_{++} < z^0 > = < z^0 > \}$$

THANK YOU FOR YOUR ATTENTION