Decompositions of the group $G(2)$ and related integrable hierarchies

Moscow

December 16, 2015

Outline of the talk

- The group $G(2)$
- Hierarchies
- The Lie algebra Psd
- The Lie algebra Ps Δ
- Decompositions in Ps Δ
- Decompositions in Psd
- The infinite Toda chain
- Compatible Lax equations
- Linearizations
- The geometric construction of solutions

The group G(2)

- \mathcal{H} Hilbert space with Hilbert basis $\left\{e_{i} \mid i \in \mathbb{Z}\right\}$.
- For each bounded operator $b: \mathcal{H} \rightarrow \mathcal{H}$, a $\mathbb{Z} \times \mathbb{Z}$-matrix $[b]=\left(b_{i j}\right)$ by the formula

$$
b\left(e_{j}\right)=\sum_{i \in \mathbb{Z}} b_{i j} e_{i} .
$$

- $S_{2}(\mathcal{H})$ ideal of Hilbert Schmidt operators, i.e. $A: \mathcal{H} \mapsto \mathcal{H}$ s.t.

$$
\|A\|_{2}^{2}:=\operatorname{trace}\left(A^{*} A\right)=\operatorname{trace}\left(|A|^{2}\right)=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left|A_{i j}\right|^{2}<\infty .
$$

- The relevant group in all cases is

$$
G(2)=\left\{g=\left(g_{i j}\right) \in \mathrm{GL}(\mathcal{H}) \mid g-\mathrm{Id} \in S_{2}(\mathcal{H})\right\}
$$

- $O(G(2))=\left\{g \in G(2) \mid[g]^{T}[g]=\mathrm{ld}\right\}$
- If \mathcal{H} is complex, $U(G(2))=\left\{g \in G(2) \mid[g]^{*}[g]=\mathrm{Id}\right\}$.

The group $G(2) 2$

- LU-decomposition in $G(2)$: on dense, open subset $g=L U$

$$
\begin{gathered}
{[L]=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \mathbf{1} & 0 & 0 & \ddots \\
\ddots & I_{n n-1} & \mathbf{1} & 0 & \ddots \\
\ddots & I_{n+1 n-1} & I_{n+1 n} & \mathbf{1} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right),} \\
{[U]=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \mathbf{u}_{n-1} \boldsymbol{n - 1} & u_{n-1 n} & u_{n-1 n+1} & \ddots \\
\ddots & 0 & \mathbf{u}_{\boldsymbol{n} \boldsymbol{n}} & u_{n n+1} & \ddots \\
\ddots & 0 & 0 & \mathbf{u}_{n+1 \boldsymbol{n + 1}} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)}
\end{gathered}
$$

- Gauss- or Iwasawa-decomposition: each $g \in G(2)$

$$
g=o(g) b^{+}(g) \text { real case, or } g=u(g) b^{+}(g) \text { complex case }
$$

$$
\text { where } o(g) \in O(G(2)), u(g) \in U(G(2)) \text { and }
$$

$$
\left[b^{+}(g)\right]=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \boldsymbol{b}_{\boldsymbol{n - 1} \boldsymbol{n - 1}} & b_{n-1 n} & b_{n-1 n+1} & \ddots \\
\ddots & 0 & \boldsymbol{b}_{\boldsymbol{n} \boldsymbol{n}} & b_{n n+1} & \ddots \\
\ddots & 0 & 0 & \boldsymbol{b}_{\boldsymbol{n + 1} \mathbf{n + 1}} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

, with all $b_{i i}>0, i \in \mathbb{Z}$.

Hierarchies 1

- General set-up for hierarchies: Lie algebra \mathfrak{g}
- $\mathfrak{g}_{i}, i=1,2$, Lie subalgebras of \mathfrak{g}

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}
$$

- π_{i} the projection of \mathfrak{g} onto \mathfrak{g}_{i} induced by this decomposition
- \mathfrak{g}_{2} Lie algebra of the Lie subgroup G_{2}
- Set linear independent, commuting elements:

$$
\left\{F_{j} \mid j \geq 1\right\} \in \mathfrak{g}_{1}
$$

- t_{j} flow parameter w.r.t. $F_{j}, \partial_{j}=\frac{\partial}{\partial t_{j}}, t=\left\{t_{j}\right\}$.

Hierarchies 2

- Search for $g_{2}(t) \in G_{2}$ such that the deformations

$$
\mathcal{F}_{j}:=g_{2}(t)^{-1} F_{j} g_{2}(t), j \geq 1
$$

satisfy for all $j_{1} \geqslant 1$ and $j_{2} \geqslant 1$:

$$
\begin{equation*}
\frac{\partial}{\partial t_{j_{1}}}\left(\mathcal{F}_{j_{2}}\right)=\left[\mathcal{F}_{j_{2}}, \pi_{2}\left(\mathcal{F}_{j_{1}}\right)\right]=\left[\pi_{1}\left(\mathcal{F}_{j_{1}}\right), \mathcal{F}_{j_{2}}\right] \tag{1}
\end{equation*}
$$

- The last equality in (1) follows from $\left[\mathcal{F}_{j_{1}}, \mathcal{F}_{j_{2}}\right]=0$.
- (1): compatible Lax equations, for in practice it implies

$$
\frac{\partial}{\partial t_{j_{1}}}\left(\pi_{1}\left(\mathcal{F}_{j_{2}}\right)\right)-\frac{\partial}{\partial t_{j_{2}}}\left(\pi_{1}\left(\mathcal{F}_{j_{1}}\right)\right)-\left[\pi_{1}\left(\mathcal{F}_{j_{1}}\right), \pi_{1}\left(\mathcal{F}_{j_{2}}\right)\right]=0
$$

a set of zero curvature relations.

Pseudo differential operators 1

- $R k$-algebra, $k=\mathbb{R}$ or $\mathbb{C}, \partial k$-linear derivation of R.
- $R[\partial]=\left\{\sum_{i=0}^{n} a_{i} \partial^{i}, a_{i} \in R\right.$ for all $\left.i \geq 0\right\}$
- Assume $\left\{\partial^{n} \mid n \geqslant 0\right\} R$-linear independent. Then

$$
R[\partial] \subset R\left[\partial, \partial^{-1}\right)=\text { Psd, the pseudo differential operators }
$$

- Psd: extension of $R[\partial]$ with integral operators $\left\{\partial^{m} \mid m<0\right\}$.
- For all m and $n \in \mathbb{Z}$

$$
\partial^{n} \partial^{m}=\partial^{n+m} \text { and } \partial^{0} \text { is the unit element. }
$$

Pseudo differential operators 2

- Pseudo differential operators

$$
\operatorname{Psd}=R\left[\partial, \partial^{-1}\right)=\left\{p=\sum_{j=-\infty}^{N} p_{j} \partial^{j}, p_{j} \in R\right\}
$$

- Significant class of invertible elements in $R\left[\partial, \partial^{-1}\right)$:

Lemma

Every scalar pseudo differential operator $P=\sum_{j \leqslant m} p_{j} \partial^{j}$, with $p_{m} \in R^{*}$, has an inverse P^{-1} of the form

$$
P^{-1}=\sum_{i \leqslant-m} q_{i} \partial^{i}, \text { with } q_{-m}=p_{m}^{-1}
$$

- Dressing $P \in R\left[\partial, \partial^{-1}\right)$ with $B \in R\left[\partial, \partial^{-1}\right)^{*}: B P B^{-1}$.

Pseudo differential operators 3

- Taking roots in Psd:

Lemma

Consider any monic pseudo differential operator

$$
U=\partial^{m}+\sum_{i<m} u_{m-i} \partial^{i}
$$

of order $m \geqslant 1$. There is a unique monic pseudo differential operator of order one

$$
U^{\frac{1}{m}}=L=\partial+\sum_{i=0}^{\infty} \ell_{1+i} \partial^{-i}
$$

with $U=\left(U^{\frac{1}{m}}\right)^{m}$. We call $U^{\frac{1}{m}}$ the m-th root of U.

Pseudo difference operators 1

- Commutative k-algebra $R, k=\mathbb{R}$ or \mathbb{C}.
- $M_{\mathbb{Z}}(R): \mathbb{Z} \times \mathbb{Z}$-matrices, coefficients from R
- $A=\left(a_{i j}\right) \in M_{\mathbb{Z}}(R)$:

$$
A=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \boldsymbol{a}_{\boldsymbol{n}-\mathbf{1 n - 1}} & a_{n-1 n} & a_{n-1 n+1} & \ddots \\
\ddots & a_{n n-1} & \boldsymbol{a}_{\boldsymbol{n} \boldsymbol{n}} & a_{n n+1} & \ddots \\
\ddots & a_{n+1 n-1} & a_{n+1 n} & \boldsymbol{a}_{n+1 \boldsymbol{n + 1}} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Pseudo difference operators 2

- To $\{d(s) \mid s \in \mathbb{Z}\}$ in R is associated $\operatorname{diag}(d(s))$:

$$
\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \mathbf{d}(\mathbf{n}-\mathbf{1}) & 0 & 0 & \ddots \\
\ddots & 0 & \mathbf{d}(\mathbf{n}) & 0 & \ddots \\
\ddots & 0 & 0 & \mathbf{d}(\mathbf{n}+\mathbf{1}) & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Diagonal matrices:

$$
\mathcal{D}_{1}(R)=\{d=\operatorname{diag}(d(s)) \mid d(s) \in R \text { for all } s \in \mathbb{Z}\}
$$

Pseudo difference operators 3

- Shift matrix Λ

$$
\Lambda=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \mathbf{0} & 1 & 0 & \ddots \\
\ddots & 0 & \mathbf{0} & 1 & \ddots \\
\ddots & 0 & 0 & \mathbf{0} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Action of the $\left\{\Lambda^{m} \mid m \in \mathbb{Z}\right\}$ on $\mathcal{D}_{1}(R)$:

$$
\Lambda^{m} \operatorname{diag}(d(s)) \Lambda^{-m}=\operatorname{diag}(d(s+m))
$$

- Each $A=\left(a_{i j}\right) \in M_{\mathbb{Z}}(R)$: decomposes uniquely

$$
A=\sum_{i \in \mathbb{Z}} d_{i} \Lambda^{i}, d_{i} \in \mathcal{D}_{1}(R)
$$

Pseudo difference operators 4

- Lower triangular matrices

$$
L T(R)=\left\{L \mid L=\sum_{i \leq N} \ell_{i} \wedge^{i}, \ell_{i} \in \mathcal{D}_{1}(R)\right\}
$$

- Each $L=\sum_{i \leq N} \ell_{i} \Lambda^{i}, \ell_{N} \in \mathcal{D}_{1}(R)^{*}$, is invertible.
- Consider a $L_{0}=\sum_{i \leq 1} \ell_{i} \wedge^{i}, \ell_{1} \in \mathcal{D}_{1}(R)^{*}$. Then:

$$
L_{0}=K_{0} \wedge K_{0}^{-1}
$$

with $K_{0}=\sum_{i \leq 0} k_{i} \wedge^{i}, k_{i} \in \mathcal{D}_{1}(R), k_{0} \in \mathcal{D}_{1}(R)^{*}$ and

$$
L T(R)=\left\{P \mid P=\sum_{i \leq N} p_{i} L_{0}^{i}, p_{i} \in \mathcal{D}_{1}(R)\right\}
$$

Pseudo difference operators 5

- Consider the invertible operator $\Delta:=\Lambda-I d:$

$$
\Delta\left(\left(\begin{array}{c}
\vdots \\
x_{n-1} \\
x_{n} \\
x_{n+1} \\
\vdots
\end{array}\right)\right)=\left(\begin{array}{c}
\vdots \\
x_{n}-x_{n-1} \\
x_{n+1}-x_{n} \\
x_{n+2}-x_{n+1} \\
\vdots
\end{array}\right)
$$

- For the difference operator Δ we have

$$
\operatorname{Ps} \Delta=L T(R)=\left\{L \mid L=\sum_{i \leq N} \ell_{i} \Delta^{i}, \ell_{i} \in \mathcal{D}_{1}(R)\right\}
$$

Elements of Ps Δ also called: pseudo difference operators.

Infinite Toda chain 1

- Particles on a straight line with nearest neighbour interaction:

- q_{n} is the displacement of the n-th particle, $n \in \mathbb{Z}$.
- Equations of motion in dimensionless form are described by

$$
\frac{d q_{n}}{d t}=p_{n} \text { and } \frac{d p_{n}}{d t}=e^{-\left(q_{n}-q_{n-1}\right)}-e^{-\left(q_{n+1}-q_{n}\right)}, \quad n \in \mathbb{Z}
$$

- Put

$$
a_{n}:=\frac{1}{2} e^{-\left(q_{n}-q_{n-1}\right)} \text { and } b_{n}:=\frac{1}{2} p_{n} .
$$

Infinite Toda chain 2

- Introduce the $\mathbb{Z} \times \mathbb{Z}$-matrices L resp. B by

$$
\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & 0 \\
\ddots & \mathbf{b}_{\mathbf{n}-\mathbf{1}} & a_{n} & 0 & \ddots \\
\ddots & a_{n} & \mathbf{b}_{\mathbf{n}} & a_{n+1} & \ddots \\
& 0 & a_{n+1} & \mathbf{b}_{\mathbf{n + 1}} & \ddots \\
0 & & \ddots & \ddots & \ddots
\end{array}\right),\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & & 0 \\
\ddots & \mathbf{0} & a_{n} & 0 & \ddots \\
\ddots & -a_{n} & \mathbf{0} & a_{n+1} & \ddots \\
& 0 & -a_{n+1} & \mathbf{0} & \ddots \\
0 & & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Equations of motion equivalent to:

$$
\frac{d L}{d t}=-B L+L B=[L, B] .
$$

Decompositions in Ps $\triangle 1$

- Consider in $L T$ the Lie subalgebra

$$
L T_{\geqslant 0}:=\left\{A=\sum_{0 \leqslant j \leqslant N} a_{j} \Lambda^{j} \mid \text { all } a_{j} \in \mathcal{D}_{1}(R)\right\}
$$

- We write $\pi_{\geqslant 0}$ for the projection of $L T$ onto $L T_{\geqslant 0}$,

$$
\pi_{\geqslant 0}\left(\sum_{-\infty \leqslant j \leqslant N} a_{j} \Lambda^{j}\right)=\sum_{0 \leqslant j \leqslant N} a_{j} \Lambda^{j} .
$$

- Similarly, we have the Lie subalgebras $L T_{<0}, L T_{\leqslant 0}, L T_{>0}$ and the respective projections $\pi_{<0}, \pi_{\leqslant 0}$ and $\pi_{>0}$.
- A $\mathbb{Z} \times \mathbb{Z}$-matrix A for which there is an $N \geqslant 0$ such that

$$
\begin{equation*}
A=\sum_{-N \leqslant j \leqslant N} a_{j} \Lambda^{j}, a_{j} \in \mathcal{D}_{1}(R) \tag{2}
\end{equation*}
$$

is called a finite band matrix in $M_{\mathbb{Z}}(R)$.

- This set of matrices is a Lie subalgebra and is denoted by $\mathcal{F B}$.

Decompositions in Ps $\triangle 2$

- Inside $\mathcal{F B}$ we have the antisymmetric matrices

$$
\mathcal{F B}_{\text {as }}(R)=\mathcal{F B}_{\text {as }}=\left\{X \in \mathcal{F B} \mid X^{T}=-X\right\}
$$

- There is a natural projection $\pi_{a s}$ from $L T$ to $\mathcal{F} \mathcal{B}_{\text {as }}$

$$
\pi_{a s}\left(\sum_{j \leqslant N} a_{j} \Lambda^{j}\right)=\sum_{j \geqslant 1}\left(a_{j} \Lambda^{j}-\Lambda^{-j} a_{j}\right),
$$

with $L T_{\leqslant 0}$ as a kernel.

- Note that at the infinite Toda chain, we had $\pi_{a s}(L)=B$.
- This gives the following 3 decompositions of $L T$:

$$
\begin{aligned}
& L T=L T_{\geqslant 0} \oplus L T_{<0}, \\
& L T=L T_{>0} \oplus L T_{\leqslant 0}, \\
& L T=\mathcal{F B}_{\text {as }} \oplus L T_{\leqslant 0} .
\end{aligned}
$$

Decompositions in Psd 1

- First decomposition in Psd:

$$
P=\sum_{j} P_{j} \partial^{j}=\sum_{j<0} P_{j} \partial^{j}+\sum_{j \geqslant 0} P_{j} \partial^{j}=P_{<0}+P_{\geqslant 0}
$$

- Lie algebra Psd $=\mathrm{Psd}_{<0} \oplus \mathrm{Psd}_{\geqslant 0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$
- Group corresponding to \mathfrak{g}_{1}

$$
G_{1}=\left\{g=1+\sum_{j<0} g_{j} \partial^{j}, g_{j} \in R\right\}
$$

Decompositions in Psd 2

- Second decomposition in Psd:

$$
P=\sum_{j} P_{j} \partial^{j}=\sum_{j \leqslant 0} P_{j} \partial^{j}+\sum_{j>0} P_{j} \partial^{j}=P_{\leqslant 0}+P_{>0}
$$

- Lie algebra decomposition Psd $=\mathrm{Psd}_{\leqslant 0} \oplus \mathrm{Psd}_{>0}$
- Group corresponding to \mathfrak{g}_{1}

$$
G_{1}=\left\{g=\sum_{j \leqslant 0} g_{j} \partial^{j}, g_{j} \in R, g_{0} \in R^{*}\right\}
$$

Compatible Lax equations in Ps $\triangle 1$

- Each decomposition starting point of a compatible set of Lax equations
- Given R, set $\left\{\partial_{i} \mid i \geqslant 1\right\}$ of commuting derivations of R
- Example: $R=k\left[t_{i} \mid i \geqslant 1\right]$ or $R=k\left[\left[t_{i} \mid i \geqslant 1\right]\right]$ and

$$
\partial_{i}:=\partial_{t_{i}}:=\frac{\partial}{\partial t_{i}}
$$

- Consider the first decomposition in Ps Δ :

$$
L T_{\geqslant 0}(\Lambda) \oplus L T_{<0}(\Lambda)=\operatorname{Ps} \Delta_{\geqslant 0} \oplus \operatorname{Ps} \Delta_{<0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
$$

Compatible Lax equations in Ps $\triangle 2$

- Group corresponding to $\mathfrak{g}_{2}=\operatorname{Ps} \Delta_{<0}$:

$$
U_{-}=\left\{\operatorname{ld}+B \mid B \in \operatorname{Ps} \Delta_{<0}\right\}
$$

- Basic commuting directions: the $\left\{\Lambda^{k} \mid k \geqslant 1\right\}$
- Deformation of Λ :

$$
\mathcal{L}=\Lambda+\sum_{i=1}^{\infty} d_{i} \Lambda^{1-i}, d_{i} \in \mathcal{D}_{1}(R)
$$

- Examples: $\mathcal{L}=U \wedge U^{-1}$, with $U \in U_{-}$.

Compatible Lax equations in Ps $\Delta 3$

- Let $\mathcal{B}_{r}:=\left(\mathcal{L}^{r}\right) \geqslant 0, r \geqslant 1$.
- Search for deformations \mathcal{L} that satisfy:

$$
\partial_{k_{1}}\left(\mathcal{L}^{k_{2}}\right)=\left[\mathcal{B}_{k_{1}}, \mathcal{L}^{k_{2}}\right]=\left[\mathcal{L}^{k_{2}}, \mathcal{L}_{\leqslant 0}^{k_{1}}\right], k_{1} \text { and } k_{2} \geqslant 1 .
$$

- Sufficient the Lax equations for \mathcal{L}

$$
\partial_{k_{1}}(\mathcal{L})=\left[\mathcal{B}_{k_{1}}, \mathcal{L}\right]=\left[\mathcal{L}, \mathcal{L}_{<0}^{k_{1}}\right], k_{1} \geqslant 1,
$$

the Lower Triangular Toda (LTT)-hierarchy.

- For each solution \mathcal{L} the zero curvature relations hold:

$$
\partial_{k_{1}}\left(\mathcal{B}_{k_{2}}\right)-\partial_{k_{1}}\left(\mathcal{B}_{k_{1}}\right)-\left[\mathcal{B}_{k_{1}}, \mathcal{B}_{k_{2}}\right]=0, k_{1} \text { and } k_{2} \geqslant 1 .
$$

Compatible Lax equations in Ps $\Delta 4$

- Next relevant decomposition in $\operatorname{Ps} \Delta$:

$$
L T_{>0}(\Lambda) \oplus L T_{\leqslant 0}(\Lambda)=\operatorname{Ps} \Delta_{>0} \oplus \operatorname{Ps} \Delta_{\leqslant 0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
$$

- Group corresponding to $\mathfrak{g}_{2}=\operatorname{Ps} \Delta_{\leqslant 0}$:

$$
P_{-}=\left\{d \operatorname{ld}+B \mid, d \in \mathcal{D}_{1}(R)^{*}, B \in \operatorname{Ps} \Delta_{<0}\right\} .
$$

- Basic commuting directions: the $\left\{\Lambda^{k} \mid k \geqslant 1\right\}$.
- Deformation of Λ :

$$
\mathcal{M}=d_{0} \Lambda+\sum_{i=1}^{\infty} d_{i} \Lambda^{1-i}, d_{i} \in \mathcal{D}_{1}(R) \text { and } d_{0} \in \mathcal{D}_{1}(R)^{*}
$$

- Examples: $\mathcal{N}=P \wedge P^{-1}$, with $P \in P_{-}$.

Compatible Lax equations in Ps $\Delta 5$

- Consider the cut-off's $\mathcal{C}_{r}:=\left(\mathcal{M}^{r}\right)_{>0}, r \geqslant 1$.
- Search for deformations \mathcal{M} that satisfy:

$$
\partial_{r_{1}}\left(\mathcal{M}^{r_{2}}\right)=\left[\mathcal{C}_{r_{1}}, \mathcal{M}^{r_{2}}\right]=\left[\mathcal{M}^{r_{2}}, \mathcal{M}_{\leqslant 0}^{r_{1}}\right], r_{1} \text { and } r_{2} \geqslant 1 .
$$

- Sufficient Lax equations for \mathcal{M} the

$$
\partial_{r_{1}}(\mathcal{M})=\left[\mathcal{C}_{r_{1}}, \mathcal{M}\right]=\left[\mathcal{M}, \mathcal{M}_{\leqslant 0}^{r_{1}}\right], r_{1} \geqslant 1,
$$

the Strict Lower Triangular Toda (SLTT)-hierarchy.

- Consequence: zero curvature relations

$$
\partial_{r_{1}}\left(\mathcal{C}_{r_{2}}\right)-\partial_{r_{2}}\left(\mathcal{C}_{r_{1}}\right)-\left[\mathcal{C}_{r_{1}}, \mathcal{C}_{r_{2}}\right]=0, r_{1} \text { and } r_{2} \geqslant 1 .
$$

Compatible Lax equations in Ps $\triangle 6$

- The last relevant decomposition in $\operatorname{Ps} \Delta$:

$$
\mathcal{F} \mathcal{B}_{a s} \oplus L T_{\leqslant 0}=\operatorname{Ps} \Delta_{a s} \oplus \operatorname{Ps} \Delta_{\leqslant 0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}
$$

- Group corresponding to $\mathfrak{g}_{2}=\operatorname{Ps} \Delta_{\leqslant 0}$:

$$
P_{-}=\left\{d \operatorname{ld}+B \mid, d \in \mathcal{D}_{1}(R)^{*}, B \in \operatorname{Ps} \Delta_{<0}\right\} .
$$

- Basic commuting directions: the $\left\{\Lambda^{r}-\Lambda^{-r} \mid r \geqslant 1\right\}$.
- Commuting deformations of the $\left\{\Lambda^{r}-\Lambda^{-r}\right\}$:

$$
\mathcal{F}_{r}=m_{0} \Lambda^{r}+\sum_{i=1}^{\infty} m_{i} \Lambda^{r-i}, m_{i} \in \mathcal{D}_{1}(R) \text { and } m_{0} \in \mathcal{D}_{1}(R)^{*}
$$

- Examples: $\mathcal{F}_{r}=P\left(\Lambda^{r}-\Lambda^{-r}\right) P^{-1}$, with $P \in P_{-}$.

Compatible Lax equations in Ps $\Delta 7$

- Consider the cut-off's $\mathcal{E}_{r}:=\pi_{\text {as }}\left(\mathcal{M}_{r}\right), r \geqslant 1$.
- Search for deformations \mathcal{F}_{r} that satisfy:

$$
\partial_{r_{1}}\left(\mathcal{F}_{r_{2}}\right)=\left[\mathcal{M}_{r_{2}}, \mathcal{E}_{r_{1}}\right]=\left[\pi_{a s}^{c}\left(\mathcal{M}_{r_{1}}\right), \mathcal{M}_{r_{2}}\right], r_{1} \text { and } r_{2} \geqslant 1,
$$

where $\pi_{a s}^{c}=\mathrm{Id}-\pi_{a s}$ is a projection on $L T_{\leqslant 0}$.

- This is called the Infinite Toda Chain (ITC)-hierarchy.
- These $\left\{-\mathcal{E}_{r}\right\}$ satisfy the zero curvature relations

$$
\partial_{r_{1}}\left(\varepsilon_{r_{2}}\right)-\partial_{r_{2}}\left(\mathcal{E}_{r_{1}}\right)-\left[\varepsilon_{r_{2}}, \mathcal{E}_{r_{1}}\right]=0, r_{1} \text { and } r_{2} \geq 1 .
$$

Compatible Lax equations in Ps $\Delta 8$

- \mathcal{L} solution of the LTT-hierarchy, $\mathcal{A}_{k}:=-\left(\mathcal{L}^{k}\right)_{<0}, k \geq 1$.
- Zero curvature relations for the $\left\{\mathcal{A}_{k} \mid k \geqslant 1\right\}$:

$$
\partial_{k_{1}}\left(\mathcal{A}_{k_{2}}\right)-\partial_{k_{2}}\left(\mathcal{A}_{k_{1}}\right)-\left[\mathcal{A}_{k_{1}}, \mathcal{A}_{k_{2}}\right]=0, k_{1} \text { and } k_{2} \geqslant 1 .
$$

- \mathcal{M} solution of the SLTT-hierarchy, $\mathcal{D}_{r}:=-\left(\mathcal{M}^{r}\right)_{\leqslant 0}, r \geqslant 1$.
- Zero curvature for the $\left\{\mathcal{D}_{r} \mid r \geqslant 1\right\}$:

$$
\partial_{r_{1}}\left(\mathcal{D}_{r_{2}}\right)-\partial_{r_{2}}\left(\mathcal{D}_{r_{1}}\right)-\left[\mathcal{D}_{r_{1}}, \mathcal{D}_{r_{2}}\right]=0, r_{1} \text { and } r_{2} \geqslant 1 .
$$

- $\left\{\mathcal{F}_{r}\right\}$ solutions of ITC-hierarchy, $\mathcal{G}_{r}:=\pi_{\text {as }}^{c}\left(\mathcal{F}_{r}\right), r \geqslant 1$.
- Zero curvature for the $\left\{\mathcal{G}_{r} \mid r \geqslant 1\right\}$:

$$
\partial_{r_{1}}\left(\mathcal{G}_{r_{2}}\right)-\partial_{r_{2}}\left(\mathcal{G}_{r_{1}}\right)-\left[\mathcal{G}_{r_{1}}, \mathcal{G}_{r_{2}}\right]=0, r_{1} \text { and } r_{2} \geqslant 1 .
$$

Compatible Lax equations in $\operatorname{Ps} \triangle 9$

- \mathcal{L} potential solution LTT-hierarchy, $\mathcal{A}_{k}:=-\left(\mathcal{L}^{k}\right)_{<0}, k \geqslant 1$.
- Related Cauchy problem: find a $u \in U_{-}(R)$ s.t. for all $k \geqslant 1$

$$
\begin{equation*}
\partial_{k}(u)=\mathcal{A}_{k} u \tag{3}
\end{equation*}
$$

- \mathcal{M} potential solution SLTT-hierarchy, $\mathcal{D}_{r}:=-\left(\mathcal{M}^{r}\right)_{\leqslant 0}, r \geqslant 1$.
- Related Cauchy problem: find a $p \in P_{-}(R)$ s.t. for all $r \geqslant 1$

$$
\begin{equation*}
\partial_{r}(p)=\mathcal{D}_{r} p \tag{4}
\end{equation*}
$$

- $\left\{\mathcal{F}_{r}\right\}$ potential solutions ITC-hierarchy
- Related Cauchy problem: find a $g \in P_{-}(R)$ s.t. for all $j \geqslant 1$

$$
\begin{equation*}
\partial_{j}(g)=\pi_{L T, a s}^{c}\left(\mathcal{F}_{j}\right) g, \tag{5}
\end{equation*}
$$

Compatible Lax equations in Psd

- Decomposition Psd $=\operatorname{Psd}_{<0} \oplus \mathrm{Psd}_{\geqslant 0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$
- Deformation $L=\partial+\sum_{i \geqslant 1} \ell_{i+1} \partial^{-i}, B_{k}=\left(L^{k}\right) \geqslant 0$
- Examples: $L=P \partial P^{-1}, P \in G_{1}, P=\operatorname{ld}+\sum_{i \geqslant 1} p_{i} \partial^{-i}$
- Assume R has a collection of k-linear derivations $\left\{\partial_{k} \mid k \geqslant 1\right\}$, all commuting with ∂
- Lax equations of the KP hierarchy

$$
\partial_{k_{1}}\left(L^{k_{2}}\right)=\left[B_{k_{1}}, L^{k_{2}}\right]=\left[L^{k_{2}}, L_{<0}^{k_{1}}\right], k_{1} \text { and } k_{2} \geqslant 1 .
$$

Compatible Lax equations in Psd 2

- Decomposition Psd $=\operatorname{Psd}_{\leqslant 0} \oplus \operatorname{Psd}_{>0}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$
- Consider deformations

$$
M=\partial+m_{1}+m_{2} \partial^{-1}+\cdots
$$

- Examples: $M=P \partial P^{-1}$,

$$
P \in G_{1}, P=p_{0}+\sum_{i \geqslant 1} p_{i} \partial^{-i}, p_{0} \in R^{*}
$$

- R and $\left\{\partial_{r} \mid r \geqslant 1\right\}$ as above
- Let $C_{r}=\left(M^{r}\right)_{>0}, r \geq 1$.
- Strict KP hierarchy for M and its powers:

$$
\partial_{r_{1}}\left(M^{r_{2}}\right)=\left[C_{r_{1}}, M^{r_{2}}\right]=\left[M^{r_{2}}, M_{\leqslant 0}^{r_{1}}\right], r_{1} \text { and } r_{2} \geqslant 1
$$

Linearizations 1

- Linearization of LTT-hierarchy:

$$
\begin{aligned}
& \mathcal{L} \varphi=\varphi \Lambda, \\
& \partial_{k}(\varphi)=\pi_{\geqslant 0}\left(\mathcal{L}^{k}\right) \varphi \text { for all } k \geqslant 1 .
\end{aligned}
$$

- Linearization of SLTT-hierarchy:

$$
\begin{aligned}
& \mathcal{N} \psi=\psi \Lambda \\
& \partial_{r}(\psi)=\pi_{>0}\left(\mathcal{N}^{r}\right) \psi \text { for all } r \geqslant 1 .
\end{aligned}
$$

- Linearization of ITC-hierarchy:

$$
\begin{aligned}
& \mathcal{F}_{j} \phi=\phi\left(\Lambda^{j}-\Lambda^{-j}\right) \text { for all } j \geqslant 1, \\
& \partial_{j}(\phi)=-\pi_{a s}\left(\mathcal{F}_{j}\right) \phi \text { for all } j \geqslant 1 .
\end{aligned}
$$

Linearizations 2

- For suitable φ, ψ, ϕ the linearization implies the Lax equations

$$
\begin{aligned}
& \partial_{j_{1}}\left(\mathcal{F}_{j_{2}} \phi-\phi\left(\Lambda^{j_{2}}-\Lambda^{-j_{2}}\right)\right) \\
& =\partial_{j_{1}}\left(\mathcal{F}_{j_{2}}\right) \phi+\mathcal{F}_{j_{2}}\left(\partial_{j_{1}}(\phi)\right)-\left(\partial_{j_{1}}(\phi)\right)\left(\Lambda^{j_{2}}-\Lambda^{-j_{2}}\right) \\
& =\partial_{j_{1}}\left(\mathcal{F}_{j_{2}}\right) \phi-\mathcal{F}_{j_{2}} \pi_{\text {as }}\left(\mathcal{F}_{j_{1}}\right) \phi+\pi_{a s}\left(\mathcal{F}_{j_{1}}\right) \phi\left(\Lambda^{j_{2}}-\Lambda^{-j_{2}}\right) \\
& =\left\{\partial_{j_{1}}\left(\mathcal{F}_{j_{2}}\right)-\left[\mathcal{F}_{j_{2}}, \pi_{\text {as }}\left(\mathcal{F}_{j_{1}}\right)\right]\right\} \phi=0 .
\end{aligned}
$$

- φ, ψ, ϕ belong to a $\operatorname{Ps} \Delta$-module of perturbations of the solution of the linearization corresponding to the trivial solutions of the hierarchies:

$$
\mathcal{L}=\Lambda, \mathcal{M}=\Lambda, \mathcal{F}_{j}=\Lambda^{j}-\Lambda^{-j} .
$$

- For LTT- and SLTT-hierarchy:

$$
\varphi_{0}=\psi_{0}=\exp \left(\sum_{k=1}^{\infty} t_{k} \Lambda^{k}\right)
$$

Linearizations 3

- For ITC-hierarchy:

$$
\phi_{0}=\exp \left(\sum_{k=1}^{\infty}-t_{k}\left(\Lambda^{k}-\Lambda^{-k}\right)\right)
$$

- Appropriate Ps Δ-module for ITC-hierarchy: $M($ ITC).
- $M(I T C)$ consists of formal products:

$$
\{\ell\} \phi_{0}=\left\{\sum_{j=-\infty}^{N} d_{j} \Lambda^{j}\right\} \exp \left(\sum_{j=1}^{\infty}-t_{j}\left(\Lambda^{j}-\Lambda^{-j}\right)\right), \text { where } \ell \in \operatorname{Ps} \Delta .
$$

- Elements of $M(I T C)$ are called oscillating matrices.

Linearizations 4

- Ps Δ-action on $M(I T C)$:

$$
\ell_{1}\left\{\ell_{2}\right\} \phi_{0}=\left\{\ell_{1} \ell_{2}\right\} \phi_{0} .
$$

- Right multiplication with $\left\{\Lambda^{j}-\Lambda^{-j}\right\}$

$$
\{\ell\} \phi_{0}\left(\Lambda^{j}-\Lambda^{-j}\right):=\left\{\ell\left(\Lambda^{j}-\Lambda^{-j}\right)\right\} \phi_{0} .
$$

- Action of the derivations ∂_{j} on $M(I T C)$:

$$
\left.\partial_{j}\left(\left\{\sum_{j=-\infty}^{N} d_{j} \Lambda^{j}\right\} \phi_{0}\right)=\left\{\sum_{j=-\infty}^{N} \partial_{j}\left(d_{j}\right) \Lambda^{j}\right\}-\sum_{j=-\infty}^{N} d_{j} \Lambda^{j}\left(\Lambda^{j}-\Lambda^{-j}\right)\right\} \phi_{0} .
$$

- $M(I T C)$ is a free $\operatorname{Ps} \Delta$-module with generator ϕ_{0}

Linearizations 5

- An oscillating matrix $\phi=\hat{\phi} \phi_{0}$, with $\hat{\phi}=\sum_{i=-\infty}^{m} d_{i} \wedge^{i}$, with d_{m} invertible, is called a wave matrix for the matrices $\left\{\mathcal{F}_{j}\right\}$, if it satisfies satisfies the linearization.
- The $\left\{\mathcal{F}_{j}\right\}$ form then a solution of the ITC-hierarchy
- It even suffices to show:

Proposition

Let $\phi=\hat{\phi} \phi_{0}$, with $\hat{\phi}=\sum_{i=-\infty}^{m} d_{i} \wedge^{i}$ and $d_{m} \in \mathcal{D}_{1}(R)$ invertible, be an oscillating matrix. If it satisfies for all $j \geqslant 1$

$$
\partial_{j}(\phi)=G_{j} \phi, \text { with } G_{j} \in \mathcal{F} \mathcal{B}_{a s},
$$

then $G_{j}=-\pi_{\text {as }}\left(\mathcal{F}_{j}\right)$, where $\mathcal{F}_{j}:=\hat{\phi}\left(\Lambda^{j}-\Lambda^{-j}\right) \hat{\phi}^{-1}$. In particular the $\left\{\mathcal{F}_{j}\right\}$ form a solution to the ITC-hierarchy and ϕ is a wave matrix for this solution.

Linearizations 6

- To get the oscillating matrices of the $L T T$ - resp. SLTT-hierarchy, replace ϕ_{0} by φ_{0}, resp. ψ_{0}.
- Wave matrices at the LTT-hierarchy have the form

$$
\hat{\varphi} \varphi_{0}=\left\{\operatorname{Id} \Lambda^{N}+\sum_{j<N} d_{j} \Lambda^{j}\right\} \varphi_{0}
$$

and lead to a solution $\mathcal{L}=\hat{\varphi} \wedge \hat{\varphi}^{-1}$ of the $L T T$-hierarchy.

- Wave matrices at the SLTT-hierarchy have the form

$$
\hat{\psi} \psi_{0}=\left\{\sum_{j \leqslant N} d_{j} \wedge^{j}\right\} \psi_{0}, \text { with } d_{N} \text { invertible }
$$

and lead to a solution $\mathcal{M}=\hat{\psi} \wedge \hat{\psi}^{-1}$ of the SLTT-hierarchy.

- Similar Propositions hold in the LTT- resp. SLTT-case.

Linearizations 7

- Linearization of the KP hierarchy:

$$
\begin{aligned}
& L \varphi=\varphi z \\
& \partial_{k}(\varphi)=\pi_{\geqslant 0}\left(L^{k}\right) \varphi \text { for all } k \geqslant 1
\end{aligned}
$$

- Linearization of the strict KP hierarchy:

$$
\begin{aligned}
& M \psi=\psi z \\
& \partial_{r}(\psi)=\pi_{>0}\left(M^{r}\right) \psi \text { for all } r \geqslant 1
\end{aligned}
$$

- φ resp. ψ wave functions of the KP resp. strict KP hierarchy

$$
\begin{aligned}
& \varphi=\left\{1+\sum_{i<0} a_{i} z^{i}\right\} \exp \left(\sum_{k=1}^{\infty} t_{k} z^{k}\right) \text { all } a_{i} \in R, \\
& \psi=\left\{\sum_{i \leqslant 0} b_{i} z^{i}\right\} \exp \left(\sum_{k=1}^{\infty} t_{k} z^{k}\right), \text { all } b_{i} \in R, b_{0} \in R^{*} .
\end{aligned}
$$

Geometric construction of solutions 1

- To get $\mathbb{Z} \times \mathbb{Z}$-matrices: take a Hilbert space H with Hilbert basis $\left\{e_{i} \mid i \in \mathbb{Z}\right\}$. For each bounded operator $b: H \rightarrow H$, a $\mathbb{Z} \times \mathbb{Z}$-matrix $[b]=\left(b_{i j}\right)$ by the formula

$$
b\left(e_{j}\right)=\sum_{i \in \mathbb{Z}} b_{i j} e_{i}
$$

- Choice of \mathcal{H} for 3 Ps Δ-hierarchies:

$$
\mathcal{H}=\left\{\vec{x}=\sum_{n \in \mathbb{Z}} x_{n} \vec{e}(n) \mid x_{n} \in \mathbb{R} \text { or } \mathbb{C}, \sum_{n \in \mathbb{Z}}\left|x_{n}\right|^{2}<\infty\right\} .
$$

- We put the standard inner product on \mathcal{H}

$$
<\vec{x}|\vec{y}\rangle=\sum_{n \in \mathbb{Z}} x_{n} y_{n} \text { or }\langle\vec{x} \mid \vec{y}\rangle=\sum_{n \in \mathbb{Z}} x_{n} \bar{y}_{n}
$$

- $\{\vec{e}(n) \mid n \in \mathbb{Z}\}$ an orthonormal basis of \mathcal{H}

Geometric construction of solutions 2

- For each $b \in B(\mathcal{H})$,

$$
b(\vec{x})=[b] \vec{x}=M_{[b]} \vec{x},
$$

where $[b]$ is the matrix of b w.r.t. this basis

- For $j \geqslant 1$, operator norms of $M_{\Lambda^{j}}$ and $M_{\Lambda^{j-\Lambda^{-j}}}$ satisfy

$$
\left\|M_{\Lambda^{j}}\right\|=1,\left\|M_{\Lambda^{j}-\Lambda^{-j}}\right\| \leqslant 2 .
$$

- Choose our parameters $t=\left(t_{j}\right)$ out of the space

$$
\ell_{1}(\mathbb{N})=\left\{t=\left(t_{j}\right) \mid \text { all } t_{j} \in \mathbb{R} \text { or } \mathbb{C} \text { and } \sum_{j=1}^{\infty}\left|t_{j}\right|<\infty\right\}
$$

equipped with the norm $\|t\|_{1}=\sum_{j=1}^{\infty}\left|t_{j}\right|$.

- Define analytic maps $\gamma_{1,2}$ and γ_{3} from $\ell_{1}(\mathbb{N})$ to $\mathrm{GL}(\mathcal{H})$ by

$$
\gamma_{1,2}(t)=\exp \left(\sum_{j=1}^{\infty} t_{j} M_{\Lambda^{j}}\right) \text { resp. } \gamma_{3}(t)=\exp \left(\sum_{j=1}^{\infty}-t_{j} M_{\Lambda^{j-\Lambda^{-j}}}\right)
$$

Geometric construction of solutions 3

- Matrices van $\gamma_{1,2}(t)$ and $\gamma_{3}(t)$:

$$
\left[\gamma_{1,2}(t)\right]=\exp \left(\sum_{i=1}^{\infty} t_{i} \Lambda^{i}\right),\left[\gamma_{3}(t)\right]=\exp \left(\sum_{i=1}^{\infty}-t_{i}\left(\Lambda^{i}-\Lambda^{-i}\right)\right)
$$

- Relevant group in all cases

$$
G(2)=\left\{g=\left(g_{i j}\right) \in \mathrm{GL}(\mathcal{H}) \mid g-\mathrm{Id} \in S_{2}(\mathcal{H})\right\}
$$

where the ideal $S_{2}(\mathcal{H})$ of Hilbert Schmidt operators, consists of all bounded operators $A: \mathcal{H} \mapsto \mathcal{H}$ such that

$$
\|A\|_{2}^{2}:=\operatorname{trace}\left(A^{*} A\right)=\operatorname{trace}\left(|A|^{2}\right)<\infty
$$

Geometric construction of solutions 4

- Each $b \in B(H)$ decomposes as $b=u_{-}(b)+p_{+}(b)$, with

$$
\begin{gathered}
{\left[u_{-}(b)\right]=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \mathbf{0} & 0 & 0 & \ddots \\
\ddots & b_{n n-1} & \mathbf{0} & 0 & \ddots \\
\ddots & b_{n+1 n-1} & b_{n+1 n} & \mathbf{0} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right),} \\
{\left[p_{+}(b)\right]=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \boldsymbol{b}_{n-1} \boldsymbol{n - 1} & b_{n-1 n} & b_{n-1 n+1} & \ddots \\
\ddots & 0 & \boldsymbol{b}_{\boldsymbol{n} \boldsymbol{n}} & b_{n n+1} & \ddots \\
\ddots & 0 & 0 & \boldsymbol{b}_{n+1 \boldsymbol{n + 1}} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)}
\end{gathered}
$$

Geometric construction of solutions 5

- subgroups of $G(2)$:
- $U_{-}:=\left\{g=1 d+u_{-}(g) \mid g \in G(2)\right\}$,
- $B_{+}:=\left\{g=p_{+}(g) \mid g \in G(2)\right\}$,
- $U_{+}:=\left\{g \in B_{+} \mid g_{i i}=1\right.$, for all $\left.i \in \mathbb{Z}\right\}$,
- $B_{-}:=\left\{g \in G(2) \mid g_{i j}=0\right.$ for all $\left.i<j\right\}$
- $B_{-}^{+}:=\left\{g \in B_{-} \mid g_{i i}>0\right.$ for all $\left.i\right\}$
- $O(G(2))=\left\{g \in G(2) \mid g g^{\top}=\mathrm{Id}\right\}$
- Big cell in $G(2): \Omega=U_{-} B_{+}=B_{-} U_{+}$,
- Relevant decomposition for LTT-hierarchy: for all $g \in \Omega$

$$
g=u_{-}(g) \cdot b_{+}(g)
$$

- Relevant decomposition for SLTT-hierarchy: for all $g \in \Omega$

$$
g=b_{-}(g) \cdot u_{+}(g)
$$

- Basic decomposition for ITC-hierarchy: $G(2)=B_{-}^{+} O(G(2))$
- Each $g \in G(2), g=b_{-}^{+}(g) . o(g)$.

Geometric construction of solutions 6

- For each $g \in G(2)$, the following set is non-empty, open and dense

$$
\left\{t \in \ell_{1}(\mathbb{N}) \mid \gamma_{1,2}(t) g \gamma_{1,2}(t)^{-1} \in \Omega\right\}
$$

- In the $L T T$ - and SLTT-case, choose the algebra of coefficients

$$
R_{g}:=C^{\infty}\left(\left\{t \in \ell_{1}(\mathbb{N}) \mid \gamma_{1,2}(t) g \gamma_{1,2}(t)^{-1} \in \Omega\right\}\right)
$$

with the derivations $\partial_{i}=\frac{\partial}{\partial t_{i}}, i \geq 1$.

- In the ITC-case we take

$$
R_{g}:=C^{\infty}\left(\ell_{1}(\mathbb{N})\right)
$$

with the derivations $\partial_{i}=\frac{\partial}{\partial t_{i}}, i \geq 1$.

- Define $\Phi_{1}(t)=u_{-}\left(\gamma_{1,2}(t) g \gamma_{1,2}(t)^{-1}\right) \cdot\left[\gamma_{1,2}(t)\right]$.
- Define $\Phi_{2}(t)=b_{-}\left(\gamma_{1,2}(t) g \gamma_{1,2}(t)^{-1}\right) \cdot\left[\gamma_{1,2}(t)\right]$.
- Define $\Phi_{3}(t)=b_{-}^{+}\left(\gamma_{3}(t) g \gamma_{3}(t)^{-1}\right)\left[\gamma_{3}(t)\right]$.

Geometric construction of solutions 7

Theorem

There holds:
(a) Let $g \in G(2)$. Then Φ_{1} is a wave matrix for the LTThierarchy and for each coset $g B_{+} \in G(2) / B_{+}$there is a $\mathcal{L}_{g B_{+}}$ in Ps Δ that is a solution of the LTT-hierarchy.
(b) Let $g \in G(2)$. Then Φ_{2} is a wave matrix for the SLTThierarchy and for each coset $g U_{+} \in G(2) / U_{+}$there is a $\mathcal{M}_{g U_{+}}$ in Ps Δ that is a solution of the SLTT-hierarchy.
(c) Let $g \in G(2)$. Then Φ_{3} is a wave matrix for the ITChierarchy and for each coset $g O(G(2)) \in G(2) / O(G(2))$ there is a set $\left\{\left(\mathcal{F}_{j}\right)_{g U_{+}} \mid j \geqslant 1\right\}$ in Ps Δ that forms a solution of the ITC-hierarchy.

Geometric construction of solutions 8

- For $i \in \mathbb{Z}$, define the subspace

$$
\mathcal{H}_{i}:=\left\{\sum_{n \leq i} a_{n} \vec{e}_{n} \in \mathcal{H}\right\}
$$

- The $\left\{\mathcal{H}_{i}\right\}$ form the basic flag

$$
\cdots \mathcal{H}_{i-1} \subset \mathcal{H}_{i} \subset \mathcal{H}_{i+1} \cdots,
$$

corresponding to ld B_{+}.

- To $g B_{+}$corresponds the flag $\mathcal{F}_{g B_{+}}=\left\{W_{i}=g \mathcal{H}_{i}\right\}$:

$$
\cdots g H_{i-1} \subset g H_{i} \subset g H_{i+1} \cdots
$$

- To $g U_{+}$corresponds the flag $\mathcal{F}_{g B_{+}}=\left\{W_{i}=g \mathcal{H}_{i}\right\}$ and the basis $\left\{f_{i}\right\}$,

$$
f_{i} \neq 0, f_{i} \in W_{i} / W_{i-1}
$$

- $O(G(2))$ is the fixed point set in $G(2)$ of the involution $\sigma(g)=\left(g^{T}\right)^{-1}$. Thus $G(2) / O(G(2))$ is a symmetric space.

Geometric construction of solutions 9

- Hilbert space for KP and strict KP:

$$
H=\left\{\left.\sum_{n \in \mathbb{Z}} a_{n} z^{n}\left|a_{n} \in \mathbb{C}, \sum_{n \in \mathbb{Z}}\right| a_{n}\right|^{2}<\infty\right\}
$$

- Decomposition $H=H_{-} \oplus H_{+}$, where

$$
H_{-}=\left\{\sum_{n<0} a_{n} z^{n} \in H\right\} \quad \text { and } \quad H_{+}=\left\{\sum_{n \geq 0} a_{n} z^{n} \in H\right\}
$$

- The inner product $<\cdot \mid \cdot>$ is given by

$$
<\sum_{n \in \mathbb{Z}} a_{n} z^{n} \mid \sum_{m \in \mathbb{Z}} b_{m} z^{m}>=\sum_{n \in \mathbb{Z}} a_{n} \overline{b_{n}} .
$$

- Relevant Grassmanian : $\mathrm{Gr}^{(0)}(H)=\left\{g H_{+} \mid g \in G(2)\right\}$

Geometric construction of solutions 10

- Thus $\mathrm{Gr}^{(0)}(H)$ equals the homogeneous space $G(2) / P_{1}$ with P_{1} the stabilizer of H_{+}in $G(2)$.
- P_{1} is w.r.t. the decomposition $H=H_{-} \oplus H_{+}$given by

$$
P_{1}=\left\{g=\left(\begin{array}{cc}
g_{--} & 0 \\
g_{+-} & g_{++}
\end{array}\right) \in G(2)\right\} .
$$

- $G(2)$ acts on the pairs (W, ℓ), where ℓ is a line in W, by

$$
(W, \ell) \mapsto(g W, g \ell)
$$

- The stabilizer P_{2} of the pair $\left(H_{+},<z^{0}>\right)$ is given by

$$
\left\{g \in P_{1} \mid g_{++}<z^{0}>=<z^{0}>\right\}
$$

THANK YOU FOR YOUR ATTENTION

