Extrinsic geometry and linear differential equations of $\mathfrak{s l}_{3}$-type

Boris Doubrov
(joint work with T. Morimoto)

Belarusian State University

Geometry of Differential Equations Seminar October 11, 2023

Motivation

- Study projective embeddings of filtered manifolds that can be "approximated" by rational homogeneous varieties $G / P \rightarrow P^{n}$.
- Examples of such rational homogeneous varieties are rational normal curves $P^{1} \rightarrow P^{n}$, conics $P^{1} \times P^{1} \rightarrow P^{3}$, classical Veronese, Segre, Plücker embeddings and many others.
- What if we consider embeddings of a smallest parabolic homogeneous space of depth ≥ 2, namely $\operatorname{Flag}_{1,2}\left(\mathbb{R}^{3}\right)$?
- The canonical moving frame for embeddings of such type was constructed in our earlier work (D.-Machida-Morimoto, 2021).
- A bit unexpectedly, we encounter many similarities with the projective geometry of surfaces.

Analogy with projective geometry of surfaces

- Consider a system of 2 nd order linear PDEs:

$$
\begin{aligned}
& u_{x x}=A_{1} u_{x}+B_{1} u_{y}+C_{1} u \\
& u_{y y}=A_{2} u_{x}+B_{2} u_{y}+C_{2} u
\end{aligned}
$$

where A_{i}, B_{i}, C_{i} are functions of x and y.

- Assume that the compatibility conditions are satisfied. Then this system has 4-dimensional solution space. Each solution is uniquely determined by $u, u_{x}, u_{y}, u_{x y}$ at a point.
- If $\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ is a basis in the solution space, then the surface [$u_{0}: u_{1}: u_{2}: u_{3}$] is a hyperbolic surface in P^{3}, whose asymptotic curves are given by $x=$ const and $y=$ const.
- Conversely, any hyperbolic surface in P^{3} can be represented this way. In particular, the trivial system $u_{x x}=u_{y y}=0$ corresponds to the Segre embedding

$$
P^{1} \times P^{1} \rightarrow P^{3}, \quad([1: x],[1: y]) \mapsto[1: x: y: x y]
$$

Non-holonomic version of above PDEs

(1) Replace ∂_{x} and ∂_{y} in the above equations by Lie derivatives along vector fields X and Y on a 3-dim manifold M that span a contact distribution. Let $Z=[X, Y]$.
(2) Consider now linear systems of PDEs of the form:

$$
\begin{aligned}
& X^{2} u=A_{1} X u+B_{1} Y u+C_{1} u \\
& Y^{2} u=A_{2} X u+B_{2} Y u+C_{2} u
\end{aligned}
$$

where u is an unknown function on M and A_{i}, B_{i}, C_{i} are arbitrary functional coefficients.
(3) Assume that the compatibility conditions are satisfied. Then this system has 8 -dimensional solution space. Each solution is uniquely determined by $u, X u, Y u, X Y u, Z u, X Z u, Y Z u, Z^{2} u$ at a point.
(9) If $\left\{u_{0}, u_{1}, \ldots, u_{7}\right\}$ is a basis in the solution space, then we get an embedding of M to P^{7} given by [$\left.u_{0}: u_{1}: \cdots: u_{7}\right]$.
(5) What kind of embeddings to we get that way? What embedding corresponds to the "trivial" case, when $X=\partial_{x}+y \partial_{z}, Y=\partial_{y}$, $X^{2} u=Y^{2} u=0$?

Submanifolds in parabolic homogeneous spaces

- Let G / P be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group G and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of \mathfrak{g}.
- G / P is naturally equipped with a structure of a filtered manifold

$$
0 \subset T^{-1} \subset \cdots \subset T^{-\nu}=T(G / P)
$$

defined as a flag of G-invariant vector distributions equal to $\oplus_{i \leq k} \mathfrak{g}_{-i}$ $\bmod \mathfrak{p}$ at $o=e P$.

- Given a submanifold $M \subset G / P$ we define its symbol at $x \in M$ as gr $T_{x} M$ viewed as a graded subspace in \mathfrak{g}_{-}.
- The symbol is a graded subalgebra in \mathfrak{g}_{-}, viewed up to the action of G_{0}. In general, it depends on a point $x \in M$.

Embeddings of $\mathfrak{s l}_{3}$ type

- Consider $\mathfrak{g}=\mathfrak{s l}(3, \mathbb{R})$ with the full grading $\mathfrak{g}=\sum_{i=-2}^{2} \mathfrak{g}_{i}$. Then \mathfrak{g}_{-}is just a 3-dim Heisenberg Lie algebra, and the dimensions of \mathfrak{g}_{i} are

$$
(1,2,2,2,1)
$$

- Take V be the adjoint representation of \mathfrak{g}. So, $\operatorname{dim} V=8$ and $\mathfrak{s l}(V)$ is naturally equipped with the grading with degrees from -4 to 4 .
- Consider the parabolic homogeneous space Flag $_{1,3,5,7}(V)=P S L(V) / P$, where P the stabilizer of a fixed flag:

$$
0 \subset \mathfrak{g}_{2} \subset \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \subset \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \subset \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \subset \mathfrak{g}=V
$$

- Note that \mathfrak{g} is naturally embedded into $\mathfrak{s l}(V)$ as a graded subalgebra. In particular, \mathfrak{g}_{-}is a graded subalgebra in $\mathfrak{s l}(V)_{-}$.
- We consider 3-dim submanifolds in $\operatorname{Flag}_{1,3,5,7}(V)$ with symbol \mathfrak{g}_{-}. We call them embeddings of $\mathfrak{s l}_{3}$ type.

Projective embeddings of filtered manifolds

- Any submanifold M of type $\mathfrak{s l}_{3}$ is a 3-dimensional contact manifold. Denote by $T^{-1} M$ the contact distribution on M.
- There is a natural projection:

$$
M \hookrightarrow \operatorname{Flag}_{1,3,5,7}(V) \mapsto P(V)=P^{7}
$$

- Due to the relation

$$
\mathfrak{s l}(V)_{k-1}=\left[\mathfrak{g}_{-1}, \mathfrak{s l}(V)_{k}\right]
$$

the embedding of M into $\operatorname{Flag}_{1,3,5,7}(V)$ can be restored from the projective embedding $M \rightarrow P(V)$ via the (weak) osculating flag:

$$
\begin{aligned}
\mathcal{O}_{x}^{-1} & =\hat{x}, \quad x \in M \subset P^{7}, \\
\mathcal{O}_{x}^{k-1} & =\underline{T_{x}^{-1} M}\left(\mathcal{O}^{k}\right)+\mathcal{O}_{x}^{k}, \quad k \leq-2 .
\end{aligned}
$$

- We say that an embedding of a 3-dim contact manifold $M \rightarrow P^{7}$ is of type $\mathfrak{s l}_{3}$, if it lifts to a submanifold $M \subset$ Flag $_{1,3,5,7}$ with the prescribed symbol $\mathfrak{g}_{-} \subset \mathfrak{s l}(8, \mathbb{R})_{-}$.

Flat model: adjoint variety of $S L(3)$

- The flat (or most symmetric) example of an embedding of $\mathfrak{s l}_{3}$ type is the highest root orbit in $P(V)=P\left(\mathfrak{s l}_{3}\right)$, also called the adjoint variety. It consists of all 3×3 matrices conjugate to the highest root space:

$$
\left(\begin{array}{lll}
0 & 0 & \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

- Projectivized set of all trace-free rank one 3×3 matrices. It is a 3-dim manifold that can be identified with $\operatorname{Flag}_{1,2}\left(\mathbb{R}^{3}\right)$.
- Each such matrix is of the form $\alpha \otimes v, \alpha \in \mathbb{R}^{3, *}, v \in \mathbb{R}^{3}$ and $\langle\alpha, v\rangle=0$. Up to a constant such matrices are in 1-1 correspondence with flags

$$
0 \subset\langle v\rangle \subset \alpha^{\perp} \subset \mathbb{R}^{3}
$$

- Note that $\operatorname{Flag}_{1,2}\left(\mathbb{R}^{3}\right)=P S L(3) / B$ carries a natural contact structure and its embedding into P^{7} naturally possesses $P S L(3)$ as a symmetry group.

Canonical moving frame

Theorem

To each embedding of $\mathfrak{s l}_{3}$ type $M \rightarrow P^{7}$ there canonically corresponds the pair (P, ω), where
(1) P is a principal frame bundle over M with the structure group $G^{0}=B=S T(3, R)$;
(2) ω is an $\mathfrak{s l}(V)$-valued 1-form satisfying
(i) $\langle\tilde{A}, \omega\rangle=A, A \in \mathfrak{g}^{0}$;
(ii) $R_{a}^{*} \omega=\operatorname{Ad}\left(a^{-1}\right) \omega, a \in G^{0}$;
(iii) $L_{\tilde{A}} \omega=-\operatorname{ad}(A) \omega, A \in \mathfrak{g}^{0}$;
(iv) $d \omega+\frac{1}{2}[\omega, \omega]=0$;
(3) if we decompose ω as $\omega=\omega_{I}+\omega_{I I}$ according to the direct sum decomposition $\mathfrak{s l}(V)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$, then $\omega_{l}: T_{z} P \rightarrow \mathfrak{g}$ is a linear isomorphism for any $z \in P$;
(9) if we write $\omega_{\| \prime}=\chi \omega_{1}$, then χ is a $\operatorname{Hom}\left(\mathfrak{g}_{-}, \mathfrak{g}^{\perp}\right)$-valued function on P and $\partial^{*} \chi=0$.

Fundamental invariants and cohomology

Theorem

The set of fundamental invariants of embeddings $M \rightarrow P^{7}$ of $\mathfrak{s l}_{3}$ type is described by the Lie algebra cohomology $H_{+}^{1}\left(\mathfrak{g}_{-}, \mathfrak{s l}(V) / \mathfrak{g}\right)$.

- Algebraically, we have:

$$
\mathfrak{s l}(V)=2 \Gamma_{1,1}+\Gamma_{3,0}+\Gamma_{0,3}+\Gamma_{2,2}
$$

where $\Gamma_{1,1}=\mathfrak{s l}(3)$.

- Using Kostant theorem we get:

$$
\begin{aligned}
& H_{+}^{1}\left(\mathfrak{g}_{-}, \Gamma_{1,1}\right)=H_{+}^{1}\left(\mathfrak{g}_{-}, \Gamma_{2,2}\right)=0 \\
& H_{+}^{1}\left(\mathfrak{g}_{-}, \Gamma_{3,0}\right)=H_{1}^{1}\left(\mathfrak{g}_{-}, \Gamma_{3,0}\right)=\left\langle\xi_{1}^{R}\right\rangle, \\
& H_{+}^{1}\left(\mathfrak{g}_{-}, \Gamma_{0,3}\right)=H_{1}^{1}\left(\mathfrak{g}_{-}, \Gamma_{0,3}\right)=\left\langle\xi_{1}^{S}\right\rangle .
\end{aligned}
$$

- ξ_{1}^{R}, ξ_{1}^{S} define two fundamental invariants of embeddings of $\mathfrak{s l}_{3}$ type. The embedding is locally flat if and only if they both vanish.

Intermediate parabolic space

- The adjoint action of $S L(3)$ preserves the Killing form K on $\mathfrak{s l}(3, \mathbb{R})$ of signature (5,3). The adjoint variety, lifted to $\mathrm{Flag}_{1,3,5,7}(V)$, $V=\mathfrak{s l}(3)$, consists of isotropic and co-isotropic flags in V :

$$
W_{1} \subset W_{3} \subset W_{3}^{\perp} \subset W_{1}^{\perp}
$$

The set of all such flags forms parabolic homogeneous space $\operatorname{IFlag}_{1,3}(V, K)$ of the group $L=S O(5,3)$.

Theorem

For any embeddings $M \rightarrow \operatorname{Flag}_{1,3,5,7}(V)$ of $\mathfrak{s l}_{3}$ type there exists a symmetric form K on V such that $M \subset \operatorname{IFlag}_{1,3}(V, K)$.

- This is the direct consequence of $H_{+}^{1}\left(\mathfrak{g}_{-}, \Gamma\right)=0$ for $\Gamma=\Gamma_{1,1}, \Gamma_{2,2}$.
- And the following decompositions of $\mathfrak{s l}(3)$ modules:

$$
\begin{aligned}
& \mathfrak{s l}(3) \subset \mathfrak{s o l}(5,3) \subset \mathfrak{s l}(V)=\mathfrak{s l}(8) \\
& \mathfrak{s o}(5,3)=\mathfrak{s l l}(3)+\Gamma_{3,0}+\Gamma_{0,3}, \\
& \mathfrak{s l}(8)=\mathfrak{s o}(5,3)+\Gamma_{2,2}+\Gamma_{1,1} .
\end{aligned}
$$

What we classify

(1) Osculating embeddings $\varphi: M \hookrightarrow \operatorname{Flag}_{1,3,5,7}\left(\mathbb{R}^{8}\right)$ or the corresponding embedding $M \hookrightarrow P^{7}$.
(2) Symmetry algebra $\operatorname{sym}(M)$ is defined as a set of all vector fields from $\mathfrak{s l}(8, \mathbb{R})$ tangent to M. We say that M has a locally transitive symmetry algebra if $\operatorname{sym}(M)$ is transitive on M, i.e. spans $T M$ at all points.
(3) We would like to describe (up to the action of $\operatorname{PSL}(8, \mathbb{R})$) all embeddings $M \rightarrow P^{7}$ of $\mathfrak{s l}_{3}$ type with transitive symmetry algebra.
(9) The corresponding systems of PDEs can be written as:

$$
\begin{aligned}
& Z_{1}^{2} u=a_{1} Z_{1} u+b_{1} Z_{2} u+c_{1} u \\
& Z_{2}^{2} u=a_{2} Z_{1} u+b_{2} Z_{2} u+c_{2} u
\end{aligned}
$$

in terms of left-invariant vector fields Z_{1}, Z_{2} on a 3-dimensional Lie group H, such that $\left\langle Z_{1}, Z_{2}\right\rangle$ is a (left-invariant) contact distribution on H. Here a_{i}, b_{i} and c_{i} are constants.
(5) The main question is when such systems are compatible, that is have exactly 8 -dim solution space.

Main classification

Theorem

Let $M^{3} \hookrightarrow P^{7}$ be an osculating embedding of $\mathfrak{s l}_{3}$ type with a locally transitive symmetry algebra. Then, up to equivalence, it corresponds to one of the following systems of PDEs:

	Equation	Symmetry algebra
(O)	$Z_{1}^{2} u=Z_{2}^{2} u=0$	$\mathfrak{s l}(3, \mathbb{R})$
$\left(I_{0}\right)$	$Z_{1}^{2} u=0, Z_{2}^{2} u=6 Z_{1} u$	4-dim solvable
$\left(I_{1}\right)$	$Z_{1}^{2} u=0$,	3-dim solvable
	$Z_{2}^{2} u=6 Z_{1} u+2 P_{2} Z_{2} u-\left(\frac{24 P_{2}^{2}}{25} \pm 1\right) u$	
$\left(I_{2}\right)$	$Z_{1}\left(Z_{1} \pm 2\right) u=0, Z_{2}^{2} u=6 Z_{1} u \pm 9 u$	3-dim solvable
$\left(I I_{0}\right)$	$Z_{1}^{2} u=-6 Z_{2} u, Z_{2}^{2} u=6 Z_{1} u$	$\mathfrak{s l}(2, \mathbb{R})$
$\left(I I_{1}\right)$	$\left(Z_{1}-P_{1}\right)^{2} u=-6\left(Z_{2}-P_{2}\right) u+\left(P_{1}^{2}+3 P_{2}\right) u$,	3-dim solvable
	$\left(Z_{2}-P_{2}\right)^{2} u=6\left(Z_{1}-P_{1}\right) u+\left(P_{2}^{2}-3 P_{1}\right) u$,	
	$P_{1} P_{2}=-9$	
$\left(I I_{2}\right)$	$\left(Z_{1}-P_{1}\right)^{2} u=-6\left(Z_{2}-P_{2}\right) u+\left(\frac{1}{4} P_{1}^{2}+3 P_{2}\right) u$,	3-dim solvable
	$\left(Z_{2}-P_{2}\right)^{2} u=6\left(Z_{1}-P_{1}\right) u+\left(\frac{1}{4} P_{2}^{2}-3 P_{1}\right) u$,	
	$P_{1} P_{2}=-144$	

Boris Doubrov (joint work with T. Morimoto)Extrinsic geometry and linear differential equa 12 / 16

Contact Cayley surface

- Cayley's ruled cubic is a surface in P^{3} given by the following equation (in affine coordinates):

$$
z=x y-x^{3} / 3
$$

- It corresponds to the following system of 2nd order PDEs:

$$
u_{x x}=u_{y}, \quad u_{y y}=0
$$

- Take $X=\partial_{x}$ and $Y=\partial_{y}+x \partial_{z}$ and consider the system

$$
X^{2} u=Y u, \quad Y^{2} u=0
$$

- It has 8-dim solution space, which defines an embedding $M \rightarrow P^{7}$ of $\mathfrak{s l}_{3}$ type. It has a transitive 4-dim symmetry. We call it contact Cayley surface.
- Classical Cayley surface is a unique submaximal model for non-degenerate surfaces in P^{3}. Similarly, contact Cayley surface is a unique submaximal model for embeddings of $\mathfrak{s l}_{3}$ type. Both have transitive symmetry algebras with 1-dim stabilizer.

Embedding with SL(2) symmetry

- Another remarkable example of transitive $\mathfrak{s l}_{3}$ type embeddings is a unique non-flat case with simple symmetry algebra $S L(2)$.
- Take M to be the Lie group $S L(2)$ and define X and Y to be left-invariant vector fields corresponding to $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. It is clear that $\langle X, Y\rangle$ is a contact structure on $S L(2)$.
- Consider the following system of PDEs:

$$
X^{2} u=-\alpha Y u, \quad Y^{2} u=\beta X u, \quad \alpha \beta \neq 0
$$

It turns out that this system is compatible if and only if $\alpha \beta=10$. Up to the equivalence $(\alpha, \beta) \mapsto\left(t \alpha, t^{-1} \beta\right)$ one can assume that $\alpha=\beta=\sqrt{10}$.

- The 8 -dim solution space defines an embedding $S L(2) \rightarrow P^{7}$ of $\mathfrak{s l}_{3}$ type. The symmetry algebra is $\mathfrak{s l}(2, \mathbb{R})$ (simply transitive). It acts on \mathbb{R}^{8} as a sum of two irreducible representations of dimensions 7 and 1.

Embedding with $S L(2)$ symmetry in coordinates

- Choose a local coordinate system (x, y, z) on $S L(2)$ such that the left-invariant vector fields are:

$$
\begin{aligned}
& Z_{1}=\partial_{x}+y^{2} \partial_{y}+y \partial_{z} \\
& Z_{2}=x^{2} \partial_{x}+\partial_{y}-x \partial_{z} \\
& Z_{0}=-\left[Z_{1}, Z_{2}\right]=-2\left(x \partial_{x}-y \partial_{y}+\partial_{z}\right)
\end{aligned}
$$

- The corresponding right-invariant vector fields have the form:

$$
\begin{aligned}
& Z_{1}^{\prime}=e^{z}\left((x y+1) \partial_{y}+x \partial_{z}\right), \\
& Z_{2}^{\prime}=e^{-z}\left(-(x y+1) \partial_{x}+y \partial_{z}\right), \\
& Z_{0}^{\prime}=\partial_{z}
\end{aligned}
$$

- The solution space is spanned by the constants and

$$
\left(Z_{2}^{\prime}\right)^{k}\left[\frac{x^{6}+\sqrt{10} x^{3}+1}{(x y+1)^{3}} e^{3 z}\right], \quad k=0, \ldots, 6
$$

References

(1) Cayley, A. A Memoir on Cubic Surfaces. Phil. Trans. Roy. Soc. 159, 231-326, 1869.
(2) Hwang J.M., Yamaguchi K., Characterization of Hermitian symmetric spaces by fundamental forms, Duke Math. J. 120 (2003), 621-634, arXiv:math.DG/0307105.
(3) Landsberg J.M., Robles C., Fubini-Griffiths-Harris rigidity and Lie algebra cohomology, Asian J. Math. 16 (2012), 561-586, arXiv:0707.3410.
(9) Doubrov B., Machida Y., Morimoto T. Extrinsic Geometry and Linear Differential Equations, SIGMA 17 (2021), 061, arXiv:1904.05687.
(5) Doubrov B., Morimoto T. Extrinsic Geometry and Linear Differential Equations of $\mathfrak{S l}_{3}$-type, arxiv:2308.06169.

