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Results

Given an affine connection ∇ on a surface Σ, determine
necessary/sufficient local conditions (explicit curvature invariants) for
the existence of first integrals.

If ∇ is a Levi–Civita connection, then there can exist 0, 1 or 3 linear
first integrals. Understand the non-metric case with exactly two local
linear first integrals.

Application (unexpected!): Given a one–dimensional system of
hydrodynamic type in Riemann invariants, determine
necessary/sufficient conditions for the existence of a Hamiltonian
(bi–Hamiltonian, tri–Hamiltonian) formulation of Dubrovin-Novikov
type.

Examples: Zoll connections. Hamiltonian systems from
two–dimensional Frobebnius manifolds, . . .
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Affine connections and linear first integrals

A simply-connected surface with a torsion–free affine connection
(Σ,∇) of differentiability class C4.

Affinely parametrised geodesic γ : R→ Σ,∇γ̇ γ̇ = 0. Or in local
coordinates Xa on U ⊂ Σ

Ẍa + ΓabcẊ
bẊc = 0, a, b, c = 1, 2.

Linear first integral: κ ≡ Ka(X)Ẋa s.t. dκ/dτ = 0 along the
geodesics. Equivalently

∇aKb +∇bKa = 0. (K).

Prolong this system to a connection on a rank–3 vector bundle
E → Σ. Find the integrablility conditions for the existence of
one/two/three parallel sections. Express them in terms of the
curvature of ∇ and its covariant derivatives (of order up to 3).
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Prolongation connection

Curvature decomposition

Rab
c
d = δa

cPbd − δbcPad +Babδd
c.

Schouten tensor Pab = (2/3)Rab + (1/3)Rba, and Bab = −2P[ab]. Set

β = Babε
ab for an arbitrary volume form ε.

Proposition. There is a one–to–one correspondence between solutions
to the Killing equations (K), and parallel sections of the prolongation
connection D on a rank–3 vector bundle E = Λ1(Σ)⊕ Λ2(Σ)→ Σ

Da

(
Kb

µ

)
=

(
∇aKb − εabµ

∇aµ−
(

Pba + 1
2βδ

b
a

)
Kb + µθa

)
.

Compute the curvature of D, restric its holonomy so that parallel
sections Ψ = (Ka, µ) exist. Find obstructions.
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Prolongation Curvature

Integrability conditions for DΨ = 0: FΨ = 0 where F = [D,D].

If F = 0 then ∇ is projectively flat. Otherwise differentiate:
(DF)Ψ = 0, (DDF)Ψ = 0, . . .

After K steps FKΨ = 0, where FK is a matrix of linear blue eqn.

Stop when rank (FK) = rank (FK+1).The space of parallel sections
has dimension (3− rank(FK)).

Set Lb ≡ εcd∇cPdb and define

F a =
1

3
εab(Lb − εcd∇bBcd), Na = −Fa + εbc∇aBbc

Ma
b =

1

3
εbcεde(∇aYdec −∇a∇cBde) + β Pba +

1

2
β2δba,

IN = εcdε
beMe

c
(
NbF

d − 1

2
βMb

d
)
.
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Main Theorem

Theorem (Contatto, MD) The necessary condition for a C4 torsion–free
affine connection ∇ on a surface Σ to admit a linear first integral is the
vanishing, on Σ, of invariants IN and IS respectively. For any point p ∈ Σ
there exists a neighbourhood U ⊂ Σ of p such that conditions
IN = IS = 0 on U are sufficient for the existence of a first integral on U .
There exist precisely two independent linear first integrals on U if and only
if the tensor

Ta
b ≡ NaF

b − βMa
b.

vanishes and the skew part of the Ricci tensor of ∇ is non–zero on U .
There exist three independent first integrals on U if and only if the
connection is projectively flat and its Ricci tensor is symmetric.
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Connections with two first integrals

If ∇ is a Levi–Civita connection of some metric on Σ with scalar
curvature R, then (Darboux 1887)

IN := ∗ 1

432
dR ∧ d(|∇R|2), IS := ∗dR ∧ d(4R).

A Levi–Civita connection can not admit precisely two local first
integrals. A non–metric connection can:
Theorem (Contatto, MD). Let ∇ be an affine connection on a surface
Σ which admits exactly two non–proportional linear first integrals
which are independent at some point p ∈ Σ. Coordinates
Xa = (X,Y ) can be chosen on an open set U ⊂ Σ containing p such
that

Γ1
12 = Γ1

21 =
c

2
,Γ2

11 =
PX
Q
,Γ2

12 = Γ2
21 =

PY +QX − cP
2Q

,Γ2
22 =

QY
Q

and all other components vanish, where c is a constant equal to 0 or
1, and (P,Q) are arbitrary functions of (X,Y ).
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Hamiltonian Systems of Hydrodynamic Type

One–dimensional systems of hydrodynamic type

∂X1

∂t
= λ1(X1, X2)

∂X1

∂x
,

∂X2

∂t
= λ2(X1, X2)

∂X2

∂x
. (HT )

Local hydrodynamic Hamiltonian formulation

∂Xa

∂t
= Ωab δH

δXb
,

where

H[X1, X2] =

∫
R
H(X1, X2)dx, Ωab = gab

∂

∂x
+ babc

∂Xc

∂x
.

Poisson bracket (Dubrovin+Novikov (1983), Tsarev (1985) )

{F,G} =

∫
R

δF

δXa

(
gab

∂

∂x
+ babc

∂Xc

∂x

) δG
δXb

dx

Skew-symmetry+Jacobi identity: gab is a flat metric with Christoffel
symbols γcab defined by babc = −gadγbdc.
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Obstructions to the hydrodynamic
Hamiltonian formulation

Theorem 3 (Contatto, MD). The hydrodynamic type system (HT ) admits
one, two or three Hamiltonian formulations with hydrodynamic
Hamiltonians if and only if the affine torsion–free connection ∇ defined by
its non–zero components

Γ1
11 = ∂1 lnA− 2B, Γ2

22 = ∂2 lnB − 2A, Γ1
12 = −

(1

2
∂2 lnA+A

)
, Γ2

12 = −
(1

2
∂1 lnB +B

)
,

where A =
∂2λ

1

λ2 − λ1
, B =

∂1λ
2

λ1 − λ2
, and ∂a = ∂/∂Xa

admits one, two or three independent linear first integrals respectively.
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Remarks

The connection from Theorem 3 is generically not metric but is
metrisable by the metric

h = AB dX � dY, Xa = (X,Y ).

The unparametrised geodesics of h and of ∇ conicide, and are
integral curves of a 2nd order ODE

Y ′′ = (∂XZ)Y ′ − (∂Y Z)(Y ′)2, where Z ≡ ln (AB),

In the tri–Hamiltonian case (Ferapontov (1991)) the connection from
Theorem 3 has symmetric Ricci tensor, and is projectively flat.
Equivalently, the metric h has constant Gaussian curvature i. e.

(AB)−1∂1∂2 ln (AB) = const.

Example: HT system with λ1 = −λ2 = (X − Y )n(X + Y )m. Always
bi-Hamiltonian. Tri-Hamiltonian iff nm(n2 −m2) = 0.
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Two–dimensional Frobenius Manifolds

Two–dimensional Frobenius manifolds: coordinates ua = (u, v), a
function F : U → R, associative sructure constants Cabc := ηadCbcd

C =
∂3F

∂ua∂ub∂uc
duadubduc, e =

∂

∂u1
, η =

∂3F

∂u1∂ua∂ub
duadub.

(Dubrovin (1996), Hitchin (1997)) F (u, v) = 1
2u

2v + f(v), where

f = vk, k 6= 0, 2, f = v2 ln v, f = ln v, f = e2v.

Hydrodynamic type system with Riemann invariants

X = u+

∫ √
f ′′′(v)dv, Y = u−

∫ √
f ′′′(v)dv.

Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

g(c1, c2, c3) = λ−1
( dX2

c1 + c2X + c3X2
− dY 2

c1 + c2Y + c3Y 2

)
,

η ≡ g(1, 0, 0), I ≡ g(0, 1, 0) (intersection form), J ≡ g(0, 0, 1) s. t.
Jab = IacIbdη

cd (Romano 2014).
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Dunajski (DAMTP, Cambridge) Affine connections, hydrodynamic integrability October 2015 11 / 13



Two–dimensional Frobenius Manifolds

Two–dimensional Frobenius manifolds: coordinates ua = (u, v), a
function F : U → R, associative sructure constants Cabc := ηadCbcd

C =
∂3F

∂ua∂ub∂uc
duadubduc, e =

∂

∂u1
, η =

∂3F

∂u1∂ua∂ub
duadub.

(Dubrovin (1996), Hitchin (1997)) F (u, v) = 1
2u

2v + f(v), where

f = vk, k 6= 0, 2, f = v2 ln v, f = ln v, f = e2v.

Hydrodynamic type system with Riemann invariants

X = u+

∫ √
f ′′′(v)dv, Y = u−

∫ √
f ′′′(v)dv.

Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

g(c1, c2, c3) = λ−1
( dX2

c1 + c2X + c3X2
− dY 2

c1 + c2Y + c3Y 2

)
,

η ≡ g(1, 0, 0), I ≡ g(0, 1, 0) (intersection form), J ≡ g(0, 0, 1) s. t.
Jab = IacIbdη

cd (Romano 2014).

Dunajski (DAMTP, Cambridge) Affine connections, hydrodynamic integrability October 2015 11 / 13



Two–dimensional Frobenius Manifolds

Two–dimensional Frobenius manifolds: coordinates ua = (u, v), a
function F : U → R, associative sructure constants Cabc := ηadCbcd

C =
∂3F

∂ua∂ub∂uc
duadubduc, e =

∂

∂u1
, η =

∂3F

∂u1∂ua∂ub
duadub.

(Dubrovin (1996), Hitchin (1997)) F (u, v) = 1
2u

2v + f(v), where

f = vk, k 6= 0, 2, f = v2 ln v, f = ln v, f = e2v.

Hydrodynamic type system with Riemann invariants

X = u+

∫ √
f ′′′(v)dv, Y = u−

∫ √
f ′′′(v)dv.

Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

g(c1, c2, c3) = λ−1
( dX2

c1 + c2X + c3X2
− dY 2

c1 + c2Y + c3Y 2

)
,

η ≡ g(1, 0, 0), I ≡ g(0, 1, 0) (intersection form), J ≡ g(0, 0, 1) s. t.
Jab = IacIbdη

cd (Romano 2014).

Dunajski (DAMTP, Cambridge) Affine connections, hydrodynamic integrability October 2015 11 / 13



Two–dimensional Frobenius Manifolds

Two–dimensional Frobenius manifolds: coordinates ua = (u, v), a
function F : U → R, associative sructure constants Cabc := ηadCbcd

C =
∂3F

∂ua∂ub∂uc
duadubduc, e =

∂

∂u1
, η =

∂3F

∂u1∂ua∂ub
duadub.

(Dubrovin (1996), Hitchin (1997)) F (u, v) = 1
2u

2v + f(v), where

f = vk, k 6= 0, 2, f = v2 ln v, f = ln v, f = e2v.

Hydrodynamic type system with Riemann invariants

X = u+

∫ √
f ′′′(v)dv, Y = u−

∫ √
f ′′′(v)dv.

Theorem 3: Tri–hamiltonian with 3-parameter family of flat metrics

g(c1, c2, c3) = λ−1
( dX2

c1 + c2X + c3X2
− dY 2

c1 + c2Y + c3Y 2

)
,

η ≡ g(1, 0, 0), I ≡ g(0, 1, 0) (intersection form), J ≡ g(0, 0, 1) s. t.
Jab = IacIbdη

cd (Romano 2014).

Dunajski (DAMTP, Cambridge) Affine connections, hydrodynamic integrability October 2015 11 / 13



Zoll Connections

A connection ∇ on a compact surface Σ is Zoll if its unparametrised
geodesics are simple closed curves.

Axisymmetric Zoll metrics on Σ = S2

h = (F − 1)2dX2 + sin2XdY 2, F = F (X), F : [0, π]→ [0, 1]

where F (0) = F (π) = 0 and F (π −X) = −F (X).
Non–metric Zoll connection with a linear first integral

Γ1
11 =

F ′

F − 1
− 2 cotX, Γ1

22 = −(H2 + 1) sinX cosX

(F − 1)2

Γ1
12 = Γ1

21 =
1

2

H ′ sinX cosX − 2H

cosX(F − 1)
, H = H(X)

where H(0) = H(π) = H(π/2) = 0, and H(π −X) = H(X).
Exactly two linear first integrals? Find that T ab = 0 if

F = 1 + c(H2 + 1) cotX, c ∈ R

but the boundary conditions do not hold . . . (open problem).
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Thank You!
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