FIRsT InTEGRALS OF AFFINE CONNECTIONS AND HAMILTONIAN SYsTEMS OF HYDRODYNAMIC TYPE

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

- Felipe Contatto, MD, arXiv:1510.01906.

Results

- Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.

Results

- Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.
- If ∇ is a Levi-Civita connection, then there can exist 0,1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.

Results

- Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.
- If ∇ is a Levi-Civita connection, then there can exist 0,1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.
- Application (unexpected!): Given a one-dimensional system of hydrodynamic type in Riemann invariants, determine necessary/sufficient conditions for the existence of a Hamiltonian (bi-Hamiltonian, tri-Hamiltonian) formulation of Dubrovin-Novikov type.

Results

- Given an affine connection ∇ on a surface Σ, determine necessary/sufficient local conditions (explicit curvature invariants) for the existence of first integrals.
- If ∇ is a Levi-Civita connection, then there can exist 0,1 or 3 linear first integrals. Understand the non-metric case with exactly two local linear first integrals.
- Application (unexpected!): Given a one-dimensional system of hydrodynamic type in Riemann invariants, determine necessary/sufficient conditions for the existence of a Hamiltonian (bi-Hamiltonian, tri-Hamiltonian) formulation of Dubrovin-Novikov type.
- Examples: Zoll connections. Hamiltonian systems from two-dimensional Frobebnius manifolds, ...

Affine connections and Linear first integrals

- A simply-connected surface with a torsion-free affine connection (Σ, ∇) of differentiability class C^{4}.

AFFINE CONNECTIONS AND LINEAR FIRST INTEGRALS

- A simply-connected surface with a torsion-free affine connection (Σ, ∇) of differentiability class C^{4}.
- Affinely parametrised geodesic $\gamma: \mathbb{R} \rightarrow \Sigma, \nabla_{\dot{\gamma}} \dot{\gamma}=0$. Or in local coordinates X^{a} on $U \subset \Sigma$

$$
\ddot{X}^{a}+\Gamma_{b c}^{a} \dot{X}^{b} \dot{X}^{c}=0, \quad a, b, c=1,2
$$

Affine connections and Linear first integrals

- A simply-connected surface with a torsion-free affine connection (Σ, ∇) of differentiability class C^{4}.
- Affinely parametrised geodesic $\gamma: \mathbb{R} \rightarrow \Sigma, \nabla_{\dot{\gamma}} \dot{\gamma}=0$. Or in local coordinates X^{a} on $U \subset \Sigma$

$$
\ddot{X}^{a}+\Gamma_{b c}^{a} \dot{X}^{b} \dot{X}^{c}=0, \quad a, b, c=1,2
$$

- Linear first integral: $\kappa \equiv K_{a}(X) \dot{X}^{a}$ s.t. $d \kappa / d \tau=0$ along the geodesics. Equivalently

$$
\nabla_{a} K_{b}+\nabla_{b} K_{a}=0
$$

AFFINE CONNECTIONS AND LINEAR FIRST INTEGRALS

- A simply-connected surface with a torsion-free affine connection (Σ, ∇) of differentiability class C^{4}.
- Affinely parametrised geodesic $\gamma: \mathbb{R} \rightarrow \Sigma, \nabla_{\dot{\gamma}} \dot{\gamma}=0$. Or in local coordinates X^{a} on $U \subset \Sigma$

$$
\ddot{X}^{a}+\Gamma_{b c}^{a} \dot{X}^{b} \dot{X}^{c}=0, \quad a, b, c=1,2
$$

- Linear first integral: $\kappa \equiv K_{a}(X) \dot{X}^{a}$ s.t. $d \kappa / d \tau=0$ along the geodesics. Equivalently

$$
\nabla_{a} K_{b}+\nabla_{b} K_{a}=0
$$

- Prolong this system to a connection on a rank-3 vector bundle $E \rightarrow \Sigma$. Find the integrablility conditions for the existence of one/two/three parallel sections. Express them in terms of the curvature of ∇ and its covariant derivatives (of order up to 3).

Prolongation connection

- Curvature decomposition

$$
R_{a b}{ }^{c}{ }_{d}=\delta_{a}{ }^{c} \mathrm{P}_{b d}-\delta_{b}{ }^{c} \mathrm{P}_{a d}+B_{a b} \delta_{d}{ }^{c} .
$$

Schouten tensor $\mathrm{P}_{a b}=(2 / 3) R_{a b}+(1 / 3) R_{b a}$, and $B_{a b}=-2 \mathrm{P}_{[a b]}$. Set $\beta=B_{a b} \epsilon^{a b}$ for an arbitrary volume form ϵ.

PROLONGATION CONNECTION

- Curvature decomposition

$$
R_{a b}{ }^{c}{ }_{d}=\delta_{a}{ }^{c} \mathrm{P}_{b d}-\delta_{b}{ }^{c} \mathrm{P}_{a d}+B_{a b} \delta_{d}{ }^{c} .
$$

Schouten tensor $\mathrm{P}_{a b}=(2 / 3) R_{a b}+(1 / 3) R_{b a}$, and $B_{a b}=-2 \mathrm{P}_{[a b]}$. Set $\beta=B_{a b} \epsilon^{a b}$ for an arbitrary volume form ϵ.

- Proposition. There is a one-to-one correspondence between solutions to the Killing equations (K), and parallel sections of the prolongation connection D on a rank-3 vector bundle $E=\Lambda^{1}(\Sigma) \oplus \Lambda^{2}(\Sigma) \rightarrow \Sigma$

$$
D_{a}\binom{K_{b}}{\mu}=\binom{\nabla_{a} K_{b}-\epsilon_{a b} \mu}{\nabla_{a} \mu-\left(\mathrm{P}_{a}^{b}+\frac{1}{2} \beta \delta^{b}{ }_{a}\right) K_{b}+\mu \theta_{a}} .
$$

PROLONGATION CONNECTION

- Curvature decomposition

$$
R_{a b}{ }^{c}{ }_{d}=\delta_{a}{ }^{c} \mathrm{P}_{b d}-\delta_{b}{ }^{c} \mathrm{P}_{a d}+B_{a b} \delta_{d}{ }^{c} .
$$

Schouten tensor $\mathrm{P}_{a b}=(2 / 3) R_{a b}+(1 / 3) R_{b a}$, and $B_{a b}=-2 \mathrm{P}_{[a b]}$. Set $\beta=B_{a b} \epsilon^{a b}$ for an arbitrary volume form ϵ.

- Proposition. There is a one-to-one correspondence between solutions to the Killing equations (K), and parallel sections of the prolongation connection D on a rank-3 vector bundle $E=\Lambda^{1}(\Sigma) \oplus \Lambda^{2}(\Sigma) \rightarrow \Sigma$

$$
D_{a}\binom{K_{b}}{\mu}=\binom{\nabla_{a} K_{b}-\epsilon_{a b} \mu}{\nabla_{a} \mu-\left(\mathrm{P}_{a}^{b}+\frac{1}{2} \beta \delta^{b}{ }_{a}\right) K_{b}+\mu \theta_{a}} .
$$

- Compute the curvature of D, restric its holonomy so that parallel sections $\Psi=\left(K_{a}, \mu\right)$ exist. Find obstructions.

Prolongation Curvature

- Integrability conditions for $D \Psi=0: \mathcal{F} \Psi=0$ where $\mathcal{F}=[D, D]$.

Prolongation Curvature

- Integrability conditions for $D \Psi=0: \mathcal{F} \Psi=0$ where $\mathcal{F}=[D, D]$.
- If $\mathcal{F}=0$ then ∇ is projectively flat. Otherwise differentiate: $(\mathcal{D F}) \Psi=0,(\mathcal{D D F}) \Psi=0, \ldots$

Prolongation Curvature

- Integrability conditions for $D \Psi=0: \mathcal{F} \Psi=0$ where $\mathcal{F}=[D, D]$.
- If $\mathcal{F}=0$ then ∇ is projectively flat. Otherwise differentiate: $(\mathcal{D F}) \Psi=0,(\mathcal{D D F}) \Psi=0, \ldots$
- After K steps $\mathcal{F}_{K} \Psi=0$, where \mathcal{F}_{K} is a matrix of linear blue eqn.

Prolongation Curvature

- Integrability conditions for $D \Psi=0: \mathcal{F} \Psi=0$ where $\mathcal{F}=[D, D]$.
- If $\mathcal{F}=0$ then ∇ is projectively flat. Otherwise differentiate: $(\mathcal{D F}) \Psi=0,(\mathcal{D D F}) \Psi=0, \ldots$
- After K steps $\mathcal{F}_{K} \Psi=0$, where \mathcal{F}_{K} is a matrix of linear blue eqn.
- Stop when $\operatorname{rank}\left(\mathcal{F}_{K}\right)=\operatorname{rank}\left(\mathcal{F}_{K+1}\right)$. The space of parallel sections has dimension $\left(3-\operatorname{rank}\left(\mathcal{F}_{K}\right)\right)$.

Prolongation Curvature

- Integrability conditions for $D \Psi=0: \mathcal{F} \Psi=0$ where $\mathcal{F}=[D, D]$.
- If $\mathcal{F}=0$ then ∇ is projectively flat. Otherwise differentiate: $(\mathcal{D F}) \Psi=0,(\mathcal{D} \mathcal{D} \mathcal{F}) \Psi=0, \ldots$
- After K steps $\mathcal{F}_{K} \Psi=0$, where \mathcal{F}_{K} is a matrix of linear blue eqn.
- Stop when $\operatorname{rank}\left(\mathcal{F}_{K}\right)=\operatorname{rank}\left(\mathcal{F}_{K+1}\right)$. The space of parallel sections has dimension $\left(3-\operatorname{rank}\left(\mathcal{F}_{K}\right)\right)$.
- Set $L_{b} \equiv \epsilon^{c d} \nabla_{c} \mathrm{P}_{d b}$ and define

$$
\begin{aligned}
F^{a} & =\frac{1}{3} \epsilon^{a b}\left(L_{b}-\epsilon^{c d} \nabla_{b} B_{c d}\right), \quad N_{a}=-F_{a}+\epsilon^{b c} \nabla_{a} B_{b c} \\
M_{a}{ }^{b} & =\frac{1}{3} \epsilon^{b c} \epsilon^{d e}\left(\nabla_{a} Y_{d e c}-\nabla_{a} \nabla_{c} B_{d e}\right)+\beta \mathrm{P}_{a}^{b}+\frac{1}{2} \beta^{2} \delta^{b}{ }_{a}, \\
I_{N} & =\epsilon_{c d} \epsilon^{b e} M_{e}{ }^{c}\left(N_{b} F^{d}-\frac{1}{2} \beta M_{b}^{d}\right) .
\end{aligned}
$$

Main Theorem

Theorem (Contatto, MD) The necessary condition for a C^{4} torsion-free affine connection ∇ on a surface Σ to admit a linear first integral is the vanishing, on Σ, of invariants I_{N} and I_{S} respectively. For any point $p \in \Sigma$ there exists a neighbourhood $U \subset \Sigma$ of p such that conditions $I_{N}=I_{S}=0$ on U are sufficient for the existence of a first integral on U. There exist precisely two independent linear first integrals on U if and only if the tensor

$$
T_{a}{ }^{b} \equiv N_{a} F^{b}-\beta M_{a}{ }^{b} .
$$

vanishes and the skew part of the Ricci tensor of ∇ is non-zero on U. There exist three independent first integrals on U if and only if the connection is projectively flat and its Ricci tensor is symmetric.

Connections with two first integrals

- If ∇ is a Levi-Civita connection of some metric on Σ with scalar curvature R, then (Darboux 1887)

$$
I_{N}:=* \frac{1}{432} d R \wedge d\left(|\nabla R|^{2}\right), \quad I_{S}:=* d R \wedge d(\triangle R)
$$

Connections with two first integrals

- If ∇ is a Levi-Civita connection of some metric on Σ with scalar curvature R, then (Darboux 1887)

$$
I_{N}:=* \frac{1}{432} d R \wedge d\left(|\nabla R|^{2}\right), \quad I_{S}:=* d R \wedge d(\triangle R)
$$

- A Levi-Civita connection can not admit precisely two local first integrals. A non-metric connection can:
Theorem (Contatto, MD). Let ∇ be an affine connection on a surface Σ which admits exactly two non-proportional linear first integrals which are independent at some point $p \in \Sigma$. Coordinates $X^{a}=(X, Y)$ can be chosen on an open set $U \subset \Sigma$ containing p such that

$$
\Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{c}{2}, \Gamma_{11}^{2}=\frac{P_{X}}{Q}, \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{P_{Y}+Q_{X}-c P}{2 Q}, \Gamma_{22}^{2}=\frac{Q_{Y}}{Q}
$$

and all other components vanish, where c is a constant equal to 0 or 1 , and (P, Q) are arbitrary functions of (X, Y).

Hamiltonian Systems of Hydrodynamic Type

- One-dimensional systems of hydrodynamic type

$$
\frac{\partial X^{1}}{\partial t}=\lambda^{1}\left(X^{1}, X^{2}\right) \frac{\partial X^{1}}{\partial x}, \quad \frac{\partial X^{2}}{\partial t}=\lambda^{2}\left(X^{1}, X^{2}\right) \frac{\partial X^{2}}{\partial x}
$$

Hamiltonian Systems of Hydrodynamic Type

- One-dimensional systems of hydrodynamic type

$$
\begin{equation*}
\frac{\partial X^{1}}{\partial t}=\lambda^{1}\left(X^{1}, X^{2}\right) \frac{\partial X^{1}}{\partial x}, \quad \frac{\partial X^{2}}{\partial t}=\lambda^{2}\left(X^{1}, X^{2}\right) \frac{\partial X^{2}}{\partial x} . \tag{HT}
\end{equation*}
$$

- Local hydrodynamic Hamiltonian formulation

$$
\frac{\partial X^{a}}{\partial t}=\Omega^{a b} \frac{\delta H}{\delta X^{b}}
$$

where

$$
H\left[X^{1}, X^{2}\right]=\int_{\mathbb{R}} \mathcal{H}\left(X^{1}, X^{2}\right) d x, \quad \Omega^{a b}=g^{a b} \frac{\partial}{\partial x}+b_{c}^{a b} \frac{\partial X^{c}}{\partial x} .
$$

Hamiltonian Systems of Hydrodynamic Type

- One-dimensional systems of hydrodynamic type

$$
\begin{equation*}
\frac{\partial X^{1}}{\partial t}=\lambda^{1}\left(X^{1}, X^{2}\right) \frac{\partial X^{1}}{\partial x}, \quad \frac{\partial X^{2}}{\partial t}=\lambda^{2}\left(X^{1}, X^{2}\right) \frac{\partial X^{2}}{\partial x} . \tag{HT}
\end{equation*}
$$

- Local hydrodynamic Hamiltonian formulation

$$
\frac{\partial X^{a}}{\partial t}=\Omega^{a b} \frac{\delta H}{\delta X^{b}}
$$

where

$$
H\left[X^{1}, X^{2}\right]=\int_{\mathbb{R}} \mathcal{H}\left(X^{1}, X^{2}\right) d x, \quad \Omega^{a b}=g^{a b} \frac{\partial}{\partial x}+b_{c}^{a b} \frac{\partial X^{c}}{\partial x}
$$

- Poisson bracket (Dubrovin+Novikov (1983), Tsarev (1985))

$$
\{F, G\}=\int_{\mathbb{R}} \frac{\delta F}{\delta X^{a}}\left(g^{a b} \frac{\partial}{\partial x}+b_{c}^{a b} \frac{\partial X^{c}}{\partial x}\right) \frac{\delta G}{\delta X^{b}} d x
$$

Skew-symmetry+Jacobi identity: $g^{a b}$ is a flat metric with Christoffel symbols $\gamma_{a b}^{c}$ defined by $b_{c}^{a b}=-g^{a d} \gamma^{b}{ }_{d c}$.

ObSTRUCTIONS TO THE HYDRODYNAMIC Hamiltonian formulation

Theorem 3 (Contatto, MD). The hydrodynamic type system (HT) admits one, two or three Hamiltonian formulations with hydrodynamic Hamiltonians if and only if the affine torsion-free connection ∇ defined by its non-zero components

$$
\begin{aligned}
& \Gamma_{11}^{1}=\partial_{1} \ln A-2 B, \quad \Gamma_{22}^{2}=\partial_{2} \ln B-2 A, \quad \Gamma_{12}^{1}=-\left(\frac{1}{2} \partial_{2} \ln A+A\right) \\
& \text { where } \quad A=\frac{\partial_{2} \lambda^{1}}{\lambda^{2}-\lambda^{1}}, \quad B=\frac{\partial_{1} \lambda^{2}}{\lambda^{1}-\lambda^{2}}, \quad \text { and } \quad \partial_{a}=\partial / \partial X^{a}
\end{aligned}
$$

admits one, two or three independent linear first integrals respectively.

Remarks

- The connection from Theorem 3 is generically not metric but is metrisable by the metric

$$
h=A B d X \odot d Y, \quad X^{a}=(X, Y)
$$

The unparametrised geodesics of h and of ∇ conicide, and are integral curves of a $2 n d$ order ODE

$$
Y^{\prime \prime}=\left(\partial_{X} Z\right) Y^{\prime}-\left(\partial_{Y} Z\right)\left(Y^{\prime}\right)^{2}, \quad \text { where } \quad Z \equiv \ln (A B)
$$

Remarks

- The connection from Theorem 3 is generically not metric but is metrisable by the metric

$$
h=A B d X \odot d Y, \quad X^{a}=(X, Y)
$$

The unparametrised geodesics of h and of ∇ conicide, and are integral curves of a $2 n d$ order ODE

$$
Y^{\prime \prime}=\left(\partial_{X} Z\right) Y^{\prime}-\left(\partial_{Y} Z\right)\left(Y^{\prime}\right)^{2}, \quad \text { where } \quad Z \equiv \ln (A B)
$$

- In the tri-Hamiltonian case (Ferapontov (1991)) the connection from Theorem 3 has symmetric Ricci tensor, and is projectively flat. Equivalently, the metric h has constant Gaussian curvature i. e.

$$
(A B)^{-1} \partial_{1} \partial_{2} \ln (A B)=\text { const. }
$$

Remarks

- The connection from Theorem 3 is generically not metric but is metrisable by the metric

$$
h=A B d X \odot d Y, \quad X^{a}=(X, Y)
$$

The unparametrised geodesics of h and of ∇ conicide, and are integral curves of a 2 nd order ODE

$$
Y^{\prime \prime}=\left(\partial_{X} Z\right) Y^{\prime}-\left(\partial_{Y} Z\right)\left(Y^{\prime}\right)^{2}, \quad \text { where } \quad Z \equiv \ln (A B)
$$

- In the tri-Hamiltonian case (Ferapontov (1991)) the connection from Theorem 3 has symmetric Ricci tensor, and is projectively flat. Equivalently, the metric h has constant Gaussian curvature i. e.

$$
(A B)^{-1} \partial_{1} \partial_{2} \ln (A B)=\text { const. }
$$

- Example: HT system with $\lambda^{1}=-\lambda^{2}=(X-Y)^{n}(X+Y)^{m}$. Always bi-Hamiltonian. Tri-Hamiltonian iff $n m\left(n^{2}-m^{2}\right)=0$.

Two-dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

Two-Dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v)=\frac{1}{2} u^{2} v+f(v)$, where

$$
f=v^{k}, k \neq 0,2, \quad f=v^{2} \ln v, \quad f=\ln v, \quad f=e^{2 v}
$$

Two-Dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v)=\frac{1}{2} u^{2} v+f(v)$, where

$$
f=v^{k}, k \neq 0,2, \quad f=v^{2} \ln v, \quad f=\ln v, \quad f=e^{2 v}
$$

Two-Dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v)=\frac{1}{2} u^{2} v+f(v)$, where

$$
f=v^{k}, k \neq 0,2, \quad f=v^{2} \ln v, \quad f=\ln v, \quad f=e^{2 v}
$$

- Hydrodynamic type system with Riemann invariants

$$
X=u+\int \sqrt{f^{\prime \prime \prime}(v)} d v, \quad Y=u-\int \sqrt{f^{\prime \prime \prime}(v)} d v
$$

Two-Dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v)=\frac{1}{2} u^{2} v+f(v)$, where

$$
f=v^{k}, k \neq 0,2, \quad f=v^{2} \ln v, \quad f=\ln v, \quad f=e^{2 v}
$$

- Hydrodynamic type system with Riemann invariants

$$
X=u+\int \sqrt{f^{\prime \prime \prime}(v)} d v, \quad Y=u-\int \sqrt{f^{\prime \prime \prime}(v)} d v
$$

- Theorem 3: Tri-hamiltonian with 3-parameter family of flat metrics

$$
g\left(c_{1}, c_{2}, c_{3}\right)=\lambda^{-1}\left(\frac{d X^{2}}{c_{1}+c_{2} X+c_{3} X^{2}}-\frac{d Y^{2}}{c_{1}+c_{2} Y+c_{3} Y^{2}}\right)
$$

Two-dimensional Frobenius Manifolds

- Two-dimensional Frobenius manifolds: coordinates $u^{a}=(u, v)$, a function $F: U \rightarrow \mathbb{R}$, associative sructure constants $C^{a}{ }_{b c}:=\eta^{a d} C_{b c d}$

$$
C=\frac{\partial^{3} F}{\partial u^{a} \partial u^{b} \partial u^{c}} d u^{a} d u^{b} d u^{c}, \quad \mathbf{e}=\frac{\partial}{\partial u^{1}}, \quad \eta=\frac{\partial^{3} F}{\partial u^{1} \partial u^{a} \partial u^{b}} d u^{a} d u^{b} .
$$

- (Dubrovin (1996), Hitchin (1997)) $F(u, v)=\frac{1}{2} u^{2} v+f(v)$, where

$$
f=v^{k}, k \neq 0,2, \quad f=v^{2} \ln v, \quad f=\ln v, \quad f=e^{2 v}
$$

- Hydrodynamic type system with Riemann invariants

$$
X=u+\int \sqrt{f^{\prime \prime \prime}(v)} d v, \quad Y=u-\int \sqrt{f^{\prime \prime \prime}(v)} d v
$$

- Theorem 3: Tri-hamiltonian with 3-parameter family of flat metrics

$$
g\left(c_{1}, c_{2}, c_{3}\right)=\lambda^{-1}\left(\frac{d X^{2}}{c_{1}+c_{2} X+c_{3} X^{2}}-\frac{d Y^{2}}{c_{1}+c_{2} Y+c_{3} Y^{2}}\right)
$$

- $\eta \equiv g(1,0,0), I \equiv g(0,1,0)$ (intersection form), $J \equiv g(0,0,1)$ s. t. $J_{a b}=I_{a c} I_{b d} \eta^{c d}$ (Romano 2014).

Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.

Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma=S^{2}$

$$
\begin{aligned}
& \quad h=(F-1)^{2} d X^{2}+\sin ^{2} X d Y^{2}, \quad F=F(X), \quad F:[0, \pi] \rightarrow[0,1] \\
& \text { where } F(0)=F(\pi)=0 \text { and } F(\pi-X)=-F(X)
\end{aligned}
$$

Zoll Connections

- A connection ∇ on a compact surface Σ is $Z o l l$ if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma=S^{2}$

$$
h=(F-1)^{2} d X^{2}+\sin ^{2} X d Y^{2}, \quad F=F(X), \quad F:[0, \pi] \rightarrow[0,1]
$$

where $F(0)=F(\pi)=0$ and $F(\pi-X)=-F(X)$.

- Non-metric Zoll connection with a linear first integral

$$
\begin{aligned}
& \Gamma_{11}^{1}=\frac{F^{\prime}}{F-1}-2 \cot X, \quad \Gamma_{22}^{1}=-\frac{\left(H^{2}+1\right) \sin X \cos X}{(F-1)^{2}} \\
& \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{2} \frac{H^{\prime} \sin X \cos X-2 H}{\cos X(F-1)}, \quad H=H(X)
\end{aligned}
$$

where $H(0)=H(\pi)=H(\pi / 2)=0$, and $H(\pi-X)=H(X)$.

Zoll Connections

- A connection ∇ on a compact surface Σ is Zoll if its unparametrised geodesics are simple closed curves.
- Axisymmetric Zoll metrics on $\Sigma=S^{2}$

$$
h=(F-1)^{2} d X^{2}+\sin ^{2} X d Y^{2}, \quad F=F(X), \quad F:[0, \pi] \rightarrow[0,1]
$$

where $F(0)=F(\pi)=0$ and $F(\pi-X)=-F(X)$.

- Non-metric Zoll connection with a linear first integral

$$
\begin{aligned}
& \Gamma_{11}^{1}=\frac{F^{\prime}}{F-1}-2 \cot X, \quad \Gamma_{22}^{1}=-\frac{\left(H^{2}+1\right) \sin X \cos X}{(F-1)^{2}} \\
& \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{2} \frac{H^{\prime} \sin X \cos X-2 H}{\cos X(F-1)}, \quad H=H(X)
\end{aligned}
$$

where $H(0)=H(\pi)=H(\pi / 2)=0$, and $H(\pi-X)=H(X)$.

- Exactly two linear first integrals? Find that $T_{b}^{a}=0$ if

$$
F=1+c\left(H^{2}+1\right) \cot X, \quad c \in \mathbb{R}
$$

but the boundary conditions do not hold ... (open problem).

Thank You!

