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Classical Toda Lattice

Hamiltonian function

H(q1, . . . , qN , p1, . . . , pN ) =

N∑
i=1

1

2
p2
i +

N−1∑
i=1

eqi−qi+1 .

Lax pair L̇ = [L+, L] in Flaschka variables

L =



b1 a1 0 · · · · · · 0

a1 b2 a2 · · ·
...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . aN−1

0 · · · · · · aN−1 bN


,
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L+ is the skew-symmetric part of L in the Lie algebra decomposition lower
triangular plus skew-symmetric.

Lax equations define isospectral deformations; though the entries of L vary
over time, the eigenvalues of L remain constant.

It follows that the functions Hi = 1
i TraceLi are constants of motion.

Moreover, they are in involution with respect to a Poisson structure,
associated to the above Lie algebra decomposition.
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Full Symmetric Toda

Deift, Li, Nanda and Tomei (1986) The system remains integrable when L is
replaced by a full symmetric N ×N matrix. The resulting system is called the full
symmetric Toda lattice.
The functions Hi := 1

i TraceLi are still in involution but they are not enough to
ensure integrability.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 4 / 74



Full Symmetric Toda

Deift, Li, Nanda and Tomei (1986) The system remains integrable when L is
replaced by a full symmetric N ×N matrix. The resulting system is called the full
symmetric Toda lattice.

The functions Hi := 1
i TraceLi are still in involution but they are not enough to

ensure integrability.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 4 / 74



Full Symmetric Toda

Deift, Li, Nanda and Tomei (1986) The system remains integrable when L is
replaced by a full symmetric N ×N matrix. The resulting system is called the full
symmetric Toda lattice.
The functions Hi := 1

i TraceLi are still in involution but they are not enough to
ensure integrability.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 4 / 74



Chopping

For k = 0, . . . , [ (N−1)
2 ], denote by (L− λ IdN )k the result of removing the first

k rows and the last k columns from L− λ IdN , and let

det(L− λ IdN )k = E0kλ
N−2k + · · ·+ EN−2k,k .

Set
det (L− λ IdN )k

E0k
= λN−2k + I1kλ

N−2k−1 + · · ·+ IN−2k,k .

The functions Irk, where r = 1, . . . , N − 2k and k = 0, . . . , [N−1
2 ], are

independent constants of motion, they are in involution and sufficient to account for
the integrability of the full Toda lattice.
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Bogoyavlensky-Toda

g simple Lie algebra.

h a Cartan subalgebra

Basis Π of simple roots for the root system ∆ of h in g.

∆+ positive roots

To these data one associates the Lax equation L̇ = [L+, L], where L and
L+ are defined as follows:

L =
∑̀
i=1

biHαi +
∑̀
i=1

ai(Xαi +X−αi),

L+ =
∑̀
i=1

ai(Xαi −X−αi).

Ad-invariant functions on g provide integrability
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Kostant Form

Kostant conjugates the matrix L, by a diagonal matrix to obtain a matrix of the form

X =



b1 1 0 · · · · · · 0

c1 b2 1
. . .

...

0 c2 b3
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 cN−1 bN


.

The Lax equation takes the form

Ẋ = [X+, X],

where X+ is the strictly lower triangular part of X , according to the Lie algebra
decomposition strictly lower plus upper triangular.
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Full-Kostant Toda lattice

The full-Kostant Toda lattice is obtained by replacing Π with ∆+, in the sense that
one fills the lower triangular part of X with additional variables. It leads on the
affine space of all such matrices to the Lax equation

Ẋ = [X+, X],

where X+ is again the projection to the strictly lower part of X .
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Adapted Sets

Introduce the following Lax pair (LΦ, BΦ)
Φ is any subset of ∆+ containing Π.

LΦ =
∑
α∈Π

bαHα +
∑
α∈Φ

aα(Xα +X−α)

BΦ =
∑
α∈Φ

aα(Xα −X−α)

Consistency: the Lax matrix being symmetric, the bracket [BΦ, LΦ] should give
an element of the form ∑

α∈Φ

cαHα +
∑
α∈Φ

dα(Xα +X−α)

In this case, we will say that Φ is adapted
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Criterion for a set to be Adapted

The set Φ is adapted if and only if it satisfies the following property:

∀α, β ∈ Φ, α− β or β − α ∈ Φ ∪ {0}

( α− β = 0 means that α− β is not a root )
Thus, for each Φ which is adapted we obtain a corresponding Hamiltonian system
Study this system and determine whether it is integrable
We conjecture that in fact it is integrable
We prove this claim for a particular class of such systems.

Φ = Π corresponds to the classical Toda lattice
Φ = ∆+ corresponds to the full symmetric Toda.
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Example B2 Full Symmetric Toda

Roots
We consider a Lie algebra of type B2. The
set of positive roots
∆+ = {α, β, α+ β, β + 2α} which
corresponds to the full symmetric Toda
lattice with Lax matrix L.
This system is completely integrable with
integrals h2 = 1

2
TrL2 which is the

Hamiltonian, h4 = 1
2

TrL4 and a rational
integral which is obtained by the method of
chopping.

Lax Matrix

L =


b1 a1 a3 a4 0
a1 b2 a2 0 −a4
a3 a2 0 −a2 −a3
a4 0 −a2 −b2 −a1
0 −a4 −a3 −a1 −b1
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An intermediate B2 system

Roots
Taking Φ = {α, β, α+ β} we obtain
another integrable system with Lax matrix
L
The matrix L+ is defined as above, i.e.
the skew-symmetric part of L. Again there
is rational integral given by

I11 =
a1a2 − a3b2

a3
.

Defining the Poisson bracket by
{a1, a2} = a3,
{ai, bi} = −ai i = 1, 2 and
{a1, b2} = a1 we verify easily that h2
plays the role of the Hamiltonian and I11 is
a Casimir. The set {h2, h4, I11} is an
independent set of functions in involution.

Lax Matrix

L =


b1 a1 a3 0 0
a1 b2 a2 0 0
a3 a2 0 −a2 −a3
0 0 −a2 −b2 −a1
0 0 −a3 −a1 −b1

 .
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Summary-Preview

We have defined some Hamiltonian systems associated to a subset Φ
consisting of positive roots (which we call adapted).
The associated matrix is symmetric.
As in the case of classical and Full Toda there is also an analogous system
defined by a Lax matrix which is lower triangular (the Kostant-Toda lattices).
We restrict our attention to this version of the systems.
We show that these Hamiltonian systems are associated to a nilpotent ideal of
a Borel subalgebra of a semi-simple Lie algebra g.
Since for particular (extreme) choices of the ideal one finds the classical
Kostant-Toda lattice or the full Kostant-Toda lattice, associated to g, we call
these Hamiltonian systems Intermediate Toda lattices.
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The phase space MI

g is an arbitrary complex semi-simple Lie algebra, whose rank we denote by `.

We fix a Cartan subalgebra h of g and a basis Π = {α1, . . . , α`} of the root
system ∆ of g with respect to h.

The choice of Π amounts to the choice of a Borel subalgebra b+ = h⊕ n+

of g. It also leads to a Borel subalgebra b− = h⊕ n−, corresponding to the
negative roots.

We fix an element ε in n+, satisfying 〈ε | [n−, n−]〉 = 0, where 〈· | ·〉 stands
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Example in g = slN(C)

ε :=



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0


.
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Nilpotent Ideals

Let I be a nilpotent ideal of b+.

The quotient map b+ → b+/I will be denoted by PI .

Using the isomorphism b∗+ ' b− induced by the Killing form, we can think of
the orthogonal I⊥ of I in b∗+ as a vector subspace of b−.

We consider the affine space MI := ε+ I⊥.

Explicitly,

MI = {X + ε | X ∈ b− and 〈X | I〉 = 0}.

When I = {0}, MI = b− + ε, which is the phase space of the full
Kostant-Toda lattice.

On the other extreme, taking I = [n+ , n+] the manifold MI is the phase
space of the classical Kostant-Toda lattice. We therefore call MI the
Intermediate Kostant-Toda phase space.
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Natural Poisson Bracket

MI is a Poisson submanifold of g, equipped with a Poisson structure {· , ·}.
Write g = g+ ⊕ g− where g+ := b+ and g− := n−. For X ∈ g, its projection in
g± is denoted by X±.
The endomorphism R : g→ g, defined for all X ∈ g by R(X) := X+ −X− is
an R-matrix

[X,Y ]R :=
1

2
([R(X), Y ] + [X,R(Y )]) = [X+, Y+]− [X−, Y−],

for all X,Y ∈ g, is a (new) Lie bracket on g.
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Lie-Poisson bracket on g

{F,G} (X) = 〈X | [(∇XF )+, (∇XG)+]〉 − 〈X | [(∇XF )−, (∇XG)−]〉

for every pair of functions F,G on g and for all X ∈ g.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 18 / 74



Poisson Bracket

Proposition

Let I be a nilpotent ideal of b+.

(1) The affine space MI is a Poisson submanifold of (g, {· , ·});

(2) Equipped with the induced Poisson structure, MI is isomorphic to (b+/I)∗,
equipped with the canonical Lie-Poisson bracket;

(3) A function F on MI is a Casimir function if and only if (∇X F̃ )+ ∈ I for all
X ∈MI , where F̃ is an arbitrary extension of F to g.
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Hamiltonian Vector Field

For a function H on MI , we denote its Hamiltonian vector field by XH

XH := {· , H}, so that XH [F ] = {F,H} for all F ∈ F(M).

The Hamiltonian of the intermediate Kostant-Toda lattice is the polynomial function
on MI , given by

H :=
1

2
〈X |X〉 ,

Vector field of the intermediate Kostant-Toda lattice is given by the Lax equation (on
MI )

Ẋ = [X+, X] .
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Nilpotent Ideals- P. Cellini and P. Papi 2000

Properties

If I is a nilpotent ideal of b+, then I is contained in n+.
For α ∈ ∆+, let Xa denote an arbitrary root vector, corresponding to α, i.e.,
[H,Xα] = 〈α,H〉Xα, for all H ∈ h.
Consider a subset Φ of ∆+, which has the property that if α ∈ Φ then every
root of the form α+ β, with β ∈ ∆+, belongs to Φ; we call such a set Φ an
admissible set of roots.
For such α and β, the Jacobi identity implies that [Xα, Xβ] is a multiple of
Xα+β . It follows that the (vector space) span of {Xα | α ∈ Φ} is a nilpotent
ideal of b+.
Every nilpotent ideal of b+ is of this form, for a certain admissible set of roots
Φ.
Thus, the nilpotent ideals of a given Borel subalgebra b+ of g are
parametrized by the family of all subsets Φ of ∆+, which have the property
that if α ∈ Φ then every root of the form α+ β, with β ∈ ∆+, belongs to Φ.
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Number of Nilpotent Ideals

Lie Algebra Number of Positive Roots Number of Ideals

An
(
n+1

2

)
Cn+1

Bn, Cn n2
(

2n
n

)
Dn n2 − n (n+ 1)Cn − nCn−1

G2 6 8
F4 24 105
E6 36 832
E7 63 4160
E8 120 25080

Cn =
1

n+ 1

(
2n

n

)
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Formula for counting Nilpotent ideals

The number of ad-nilpotent ideals of b is

1

|W |
∏̀
i=1

(h+mi + 1) =
∏̀
i=1

(h+mi + 1)

mi + 1

where W is the Coxeter group, h is the Coxeter number and mi are the exponents.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 23 / 74



Height of a root

Every positive root α ∈ ∆+ can be written as a linear combination of the simple

roots, α =
∑̀
i=1

niαi, where all ni are non-negative integers.

The integer ht(α) :=
∑̀
i=1

ni is called the height of α.

For k ∈ N, let Φk denote the set of all roots of height larger than k. It is clear that
Φk is an admissible set of roots.

We denote the corresponding ideal of b+ by Ik and we call it a height k ideal.

For k = 1, I1 = [n+, n+] is the ideal which leads to the classical Toda lattice.
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Example

Roots
Consider a Lie algebra of type C4. Take
Φ = {α1, α2, α3, α4, α1 + α2, α2 +
α3, α3 + α4}. It gives rise to a heigh 2
Toda system.
We need five functions to establish
integrability.
Since det(L− λI) is an even polynomial
of the form

λ8 +
3∑

i=0

fiλ
2i

we obtain four polynomial integrals

f0, f1, f2, f3. Using an one-chop we

obtain a characteristic polynomial of the

form Aλ2 +B. The function f4 = B/A

is the fifth integral.

Lax Matrix

L =



a1 1 0 0 0 0 0 0
b1 a2 1 0 0 0 0 0
c1 b2 a3 1 0 0 0 0
0 c2 b3 a4 1 0 0 0
0 0 c3 b4 −a4 −1 0 0
0 0 0 c3 −b3 −a3 −1 0
0 0 0 0 −c2 −b2 −a2 −1
0 0 0 0 0 −c1 −b1 −a1


The function

a1 − a2 + a3 − a4 +
2b1b2c3 + b1c2b4 + b3b4c1

c1c3

is a Casimir.
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Stabilizer
The stabilizer of a linear form ϕ ∈ a∗ is given by

aϕ := {x ∈ a | ad∗x ϕ = 0} = {x ∈ a | ∀y ∈ a, 〈ϕ, [x, y]〉 = 0}.

Index

The integer min{dim aϕ | ϕ ∈ a∗} is called the index of a and is denoted by
Ind(a).

Symplectic leaves

Since the symplectic leaves of the canonical Lie-Poisson structure on a∗ are the
coadjoint orbits, the codimension of the symplectic leaf through ϕ is the dimension
of aϕ. It follows that the index of a is the codimension of a symplectic leaf of
maximal dimension, i.e., the rank of the canonical Lie-Poisson structure on a∗ is
given by dim a− Ind(a)

Regular Forms

A linear form ϕ ∈ a∗ is said to be regular if dim aϕ = Ind(a)

Rank of Lie-Poisson structure
We can use regular linear forms to compute the index of a, and hence the rank of
the canonical Lie-Poisson structure on a∗.
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Let a be a subalgebra of a semi-simple complex Lie algebra g. Suppose that ϕ is a
linear form on a, such that aϕ is a commutative Lie algebra composed of
semi-simple elements. Then ϕ is regular, so that the index of a is given by dim aϕ.

Proof.
A linear form ϕ ∈ a∗ is said to be stable if there exists a neighborhood U of ϕ in a∗

such that for every ψ ∈ U , the stabilizer aψ is conjugate to aϕ, with respect to the
adjoint group of a. Every stable linear form is regular. ϕ is stable if and only if
[a, aϕ] ∩ aϕ = {0}. The latter equality holds when aϕ is a commutative Lie
algebra composed of semi-simple elements. Thus, ϕ is stable, hence regular.
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Hypothesis

The roots of height 2 of g are given by {αk + αk+1 | 1 ≤ k ≤ `− 1}

For classical Lie algebras, the basis Π can be ordered such that this assumption
occurs when g is of type A`, B` or C`.

Consider the linear form ϕ on b+, defined for Z ∈ b+ by 〈ϕ,Z〉 := 〈X | Z〉,
where X is defined by

X := δ`X−α`
+

`−1∑
i=1

X−αi−αi+1 ,

with δ` := 1 if ` is odd and δ` := 0 otherwise. Denote by ϕ̄ the induced linear form
on b+/I2.

(1) ϕ̄ is a regular linear form on b+/I2;
(2) dim(b+/I2)ϕ̄ = 1− δ`;
(3) The index of b+/I2 is 1 if the rank ` of g is even and is 0 otherwise.
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Integrability

We now get to the Integrability of the intermediate Kostant-Toda lattice on
MI2 ⊂ g, for any semi-simple Lie algebra g of type A`, B` or C`.

Hamiltonian is part of a family of s independent functions in involution, where s is
related to the dimension and the rank of the Poisson manifold MI2 by the formula

dimMI2 =
1

2
RkMI2 + s.

Since dimMI2 = 3`− 1 and since the corank of MI2 is 1 if ` is even and 0
otherwise we need s = [3`/2] such functions.

According to the Adler Kostant Symes Theorem, the ` basic Ad-invariant
polynomials provide already ` independent functions in involution. Thus, one needs
[`/2] extra ones.

As we will see, they can be constructed by restricting certain chop-type integrals,
except for the case of C` where another integral (Casimir) is needed.
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Al

We first consider g = sl`+1(C), the Lie algebra of traceless matrices of size
N = `+ 1, taking for h, Π and ε the standard choices, as before. A general
element ofMI2 is then of the form

X =



a1 1 0 . . . . . . 0

b1 a2 1
. . .

...

c1 b2 a3 1
. . .

...

0 c2 b3
. . .

. . . 0
...

. . .
. . .

. . .
. . . 1

0 . . . 0 c`−1 b` a`+1


,

with
∑`+1

i=1 ai = 0.
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The 1-chop matrix of X is given by

(X − λ Id`+1)1 =



b1 aλ2 1 0 . . . 0

c1 b2 aλ3 1
. . .

...

0 c2 b3
. . .

. . . 0
...

. . . c3 b4
. . . 1

...
. . .

. . .
. . . aλ`

0 . . . . . . 0 c`−1 b`


,

where aλi is a shorthand for ai − λ. We also use the matrix X(λ, α), defined by
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X(λ, α) =



b1 aλ2 α13 . . . . . . α1`

c1 b2 aλ3 α24
...

0 c2 b3
. . .

. . .
...

...
. . . c3 b4

. . . α`−2,`
...

. . .
. . .

. . . aλ`
0 . . . . . . 0 c`−1 b`


.
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The polynomials det(X − λ Id`+1)1 and detX(λ, α) have degree d := [ `2 ] in λ;
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Integrability

Let det(X − λ 1`+1)1 =
∑[`/2]

k=0 Ekλ
k

Ik+1 = Ek
E[`/2]

for k = 0, . . . , [`/2]− 1

Proposition

The functions H1, . . . ,H`, I1, . . . , I[`/2] form a set of constants of motion in
involution. When ` is odd, the rank of the underlying Poisson manifold MI2 is
maximal, while the rank is dimMI2 − 1 otherwise, with I`/2 as a Casimir function.
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Bl

Chops

A Lie algebra of type B` can be realized as the Lie algebra g of all square
matrices of size N = 2`+ 1, satisfying XJ + JXt = 0, where J is the
matrix of size 2`+ 1, all of whose entries are zero, except for the entries on
the anti-diagonal, which are all equal to one.
det(X − λ Id`+1) = (−1)N det(X + λ Id`+1), so that the characteristic
polynomial is an odd polynomial in λ.
The 1-chop matrix X1 satisfies the same relation X1J + JXt

1 = 0, so that
its determinant is an even polynomial in λ.
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Integrability

Lax matrix

a1 1

b1
. . .

. . .

c1
. . .

. . . 1
. . . bn−1 an 1

cn−1 bn 0 −1

0 −bn −an
. . .

−cn−1 −bn−1
. . .

. . .
. . .

. . . −1
−c1 −b1 −a1


In this case N = 2`+ 1, the 1-chop polynomial is even, so the 1-chop polynomial
is degree ` when ` is even and of degree `− 1 when ` is odd. This yields `

2

integrals when ` is even and `−1
2 when ` is odd. Therefore the number of integrals

is correct in each case.
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Cl

Chops

A Lie algebra of type C` can be realized as the Lie algebra g of all square
matrices of size N = 2`, satisfying XJ + JXt = 0, where J is the matrix
of size 2`, given by

J =

(
0 Il
−Il 0

)
.

It follows for such X that det(X − λ Id`+1) = (−1)2l det(X + λ Id`+1),
so that the characteristic polynomial is an even polynomial in λ.
The 1-chop matrix X1 satisfies the same relation X1J + JXt

1 = 0, so that
its determinant is an even polynomial in λ.
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Integrability

Lax matrix

a1 1

b1 a2
. . .

c1 b2
. . . 1

. . .
. . . an 1
cn−1 bn −an −1

cn−1 −bn−1
. . .

. . .

−cn−2
. . .

. . .
. . .

. . .
. . . −1

−c1 −b1 −a1



.

In this case N = 2`, the 1-chop polynomial is even, so we get l2 − 1 integrals from

the 1-chop when l is even and l−2
2 integrals when l is odd. Therefore the odd case

gives the correct number of integrals. For the even case there exists a Casimir
function which does not arise from the method of chopping.
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Cl Casimir

Definition
The Casimir f has the form

f = A+
B

C
,

where

A =

`−1∑
i=1

(ai − ai+1) ,

C =

`−1∏
i=1

c2i−1 .

and
B =

∑
i,j

dijmij .

The term mij in B is determined as follows: We associate the
variables b1, b2, . . . , bl to the simple roots α1, α2, . . . , αl and
the variables c1, c2, . . . , cl−1 to the height 2 roots
α1 + α2, α2 + α3, . . . , αl−1 + αl.
Take simple roots αi, αj (with corresponding variables bi, bj ) such
that i is odd and j is even. The remaining variables correspond to
the height two roots αk + αk+1 where k 6= i, i− 1,

k 6= j, j − 1. The term mij is a product of bi, bj and l−1
2
c

variables.

The coefficient dij is 2 if mij includes the term cl−1

(corresponding to the root αl−1 +αl), and is equal to 1 otherwise.
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Example: l = 6

f = A+
B

C

A = a1 − a2 + a3 − a4 + a5 − a6

B = b5b6c1c3 + 2b1b4c2c5 + b3b6c1c4 + 2b1b2c3c5 + 2b3b4c1c5 + b1b6c2c4

C = c1c3c5
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D`

A Lie algebra of type D` can be realized as the Lie algebra g of all square
matrices of size N = 2`, satisfying XJ + JXt = 0, where J is the matrix
of size 2`, given by

J =

(
0 Il
Il 0

)
.

As in the case of C` the characteristic polynomial is an even polynomial. On
the other hand the 1-chop polynomial is odd so the degree of this polynomial
is `− 1 when ` is even. But when ` is odd the degree of the 1-chop
polynomial is again `. This gives `

2 − 1 integrals when ` is even and `−1
2

integrals when ` is odd. In the even case we need an extra function i.e. a
Casimir but at this point we do not have an explicit formula. There is no stable
form in this case, but we can produce a form which gives a lower bound for
the rank and this lower bound is good enough, once we have the Casimir.
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Lotka-Volterra equations

Lotka–Volterra equations

They are ordinary first-order differential equations.

They were introduced in the 1920s by:

(a) Volterra to model interactions of biological species,
(b) Lotka to investigate autocatalytic chemical reactions.
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Applications

Lotka-Volterra Systems
Basis for many models used today in the analysis of population dynamics

Applications in physics:

mode coupling of waves in lasers,

plasma physics.

Applications in other sciences:

In biology, chemistry and economics,

a large class of ordinary differential equations can be reduced to Lotka-Volterra
via quasimonomial transformations of variables.

e.g. in game dynamics: replicator equations↔ Lotka-Volterra (LV)
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KM system

The KM system is a well-known integrable system

defined by:
ẋi = xi(xi+1 − xi−1) i = 1, 2, . . . , n,

where: x0 = xn+1 = 0.

Kac and van-Moerbeke solved the system using:

a discrete version of inverse scattering due to Flaschka .

Moser gave a solution of the system using:

the method of continued fractions.

Bogoyavlensky generalized this system for:

each simple Lie algebra and
showed that the corresponding systems are also integrable.

Our generalization is different from the one of Bogoyavlensky.
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ẋi = xi(xi+1 − xi−1) i = 1, 2, . . . , n,

where: x0 = xn+1 = 0.

Kac and van-Moerbeke solved the system using:
a discrete version of inverse scattering due to Flaschka .

Moser gave a solution of the system using:
the method of continued fractions.

Bogoyavlensky generalized this system for:
each simple Lie algebra and
showed that the corresponding systems are also integrable.

Our generalization is different from the one of Bogoyavlensky.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 44 / 74



KM system

The KM system is a well-known integrable system
defined by:
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Lax Pair 1

L =



x1 0
√
x1x2 0 . . . 0

0 x1 + x2 0
√
x2x3

...

√
x1x2 0 x2 + x3

. . .
0

√
x2x3

... . . .
√
xn−1xn

xn−1 + xn 0√
xn−1xn 0 xn



B =



0 0 1
2

√
x1x2 0 . . . 0

0 0 0 1
2

√
x2x3

...

− 1
2

√
x1x2 0 0

. . .

0 − 1
2

√
x2x3

... . . . 1
2

√
xn−1xn

0 0
− 1

2

√
xn−1xn 0 0
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Properties

This is an example of an isospectral deformation:

The entries of L vary over time but the eigenvalues remain constant.

The functions Hi = 1
iTrLi are constants of motion.

Quadratic Poisson bracket

Definition: {xi, xi+1} = xixi+1, all other brackets equal to zero.

detL is a Casimir.

The eigenvalues of L are in involution and the functions Hi are in involution.

Taking the function
∑n

i xi as the Hamiltonian we obtain equations (44).

This bracket can be realized from

the second Poisson bracket of the Toda lattice by

setting the momentum variables equal to zero
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Lax Pair 2

There is another Lax pair where:

L is in the nilpotent subalgebra n−, corresponding to the negative roots.

One usually picks for ε a principal nilpotent element of n+.

The Lax pair is of the form L̇ = [L,B] where:

L

0 1 0 · · · · · · 0

x1 0 1
. . .

...

0 x2 0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 xn 0



B

0 1 0 · · · · · · 0

0 0 1
. . .

...

x1x2 0 0
. . .

...
... x2x3

. . .
. . . 0

...
. . .

. . . 1
0 · · · · · · xn−1xn 0 0
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Lax Pair 3 Moser

The position of the variables ai in L corresponds to

the simple root vectors of a root system of type An.

The position of the variables in B corresponds to

the sum of two simple roots αi and αj .

The change of variables xi = a2
i gives KM equations.

L

0 a1 0 · · · · · · 0

a1 0 a2

. . .
.
.
.

0 a2 0
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

.

.

.
. . .

. . . an
0 · · · · · · 0 an 0



B

0 0 a1a2 · · · · · · 0

0 0 0
. . .

.

.

.

−a1a2 0 0
. . . a2a3

.

.

.

.

.

. −a2a3

. . .
. . . an−1an

.

.

.
. . .

. . . 0
0 · · · · · · −an−1an 0 0
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Lotka-Volterra systems

KM-system belongs to a large class of the so called Lotka-Volterra systems

The most general form of the equations is:

ẋi = εixi +
n∑
j=1

aijxixj , i = 1, 2, . . . , n .

We may assume that there are no linear terms (εi = 0).

We also assume that the matrix A = (aij) is skew-symmetric.

Associated Poisson Bracket

for the Lotka-Volterra system is defined by

{xi, xj} = aijxixj , i, j = 1, 2, . . . , n .

It is clear that the skew-symmetric matrix A = (aij) determines the bracket.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 49 / 74



Lotka-Volterra systems

KM-system belongs to a large class of the so called Lotka-Volterra systems

The most general form of the equations is:
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LV systems: Properties

The system is Hamiltonian

with Hamiltonian function:

H = x1 + x2 + · · ·+ xn .

Hamilton’s equations take the form

ẋi = {xi, H}.

The Poisson tensor

is Poisson isomorphic to

the constant Poisson structure defined by the constant matrix A.

Casimirs

If k = (k1, k2 · · · , kn) is a vector in the Kernel of A then

the function f = xk11 x
k2
2 · · ·xknn is a Casimir
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Simple Lotka-Volterra systems

Let g be a complex simple Lie algebra

h a Cartan subalgebra
Π = {α1, . . . α`} a basis of simple roots for the root system ∆ of h in g.
Let Xα1 , · · · , Xαn be the corresponding root vectors in g.
Define

L =
∑
αi∈Π

xiXαi .

For each i, j we form [Xαi , Xαj ].
If αi+αj is a root then we include a term of the form±xixj [Xαi , Xαj ] inB.
By making suitable choices for the ± signs it is possible to construct a
consistent Lax pair.
Define the system

L̇ = [L,B] .

For a root system of type An we obtain the KM system.
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Second approach: From the Dynkin diagram

It works for ADE Dynkin diagrams

ẋi = xi
∑̀
j=1

mijxj

where the skew-symmetric matrix mij for i < j is defined to be mij = 1 if vertex i
is connected with vertex j and 0 otherwise

For i > j the term mij is defined by skew-symmetry

There are several inequivalent ways to label a graph and therefore the
association between graphs and Lotka-Volterra systems is not always a
bijection.

The number of distinct labellings of a given unlabeled simple graph G on n
vertices is known to be

n!

|aut (G)|
.
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A3 Diagram

i1 i2 i3

Consider a Dynkin diagram with graph A3. We label the vertices from left to right.
To define ẋ1 we note that vertex 1 is joined only with vertex 2. Therefore we
include a term x1x2. We define m13 = 0 since vertex 1 is not connected with
vertex 3. Similarly we define m23 = 1 since vertex 2 is connected with vertex 3.
Therefore we obtain the KM system

ẋ1 = x1x2

ẋ2 = −x1x2 + x2x3

ẋ3 = −x2x3.
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E6 Diagram

i i i i i
i

ẋ1 = x1x2

ẋ2 = x2(−x1 + x3)
ẋ3 = x3(−x2 + x4 + x5)
ẋ4 = −x3x4

ẋ5 = x5(−x3 + x6)
ẋ6 = −x5x6 .

The associated Poisson structure is symplectic. Therefore to prove integrability one
needs another two constants of motion besides the Hamiltonian.
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D4 Dynkin Diagram

Equations from the Dynkin diagram of the simple Lie algebra of type D4

ẋ1 = x1x2

ẋ2 = −x1x2 + x2x3 + x2x4

ẋ3 = −x2x3

ẋ4 = −x2x4 .

Lax pair

L =



0 1 0 0 0 0 0 0
x1 0 1 0 0 0 0 0
0 x2 0 1 1 0 0 0
0 0 x3 0 0 1 0 0
0 0 x4 0 0 −1 0 0
0 0 0 x4 −x3 0 −1 0
0 0 0 0 0 −x2 0 −1
0 0 0 0 0 0 −x1 0
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Hk =
1

k
trLk, k = 1, 2, . . .

are integrals of motion for the system.

4H2 = x1+x2+x3+x4 4H4 = x2
1+x2

2+x2
3+x2

4+2x1x2+2x2x3+2x2x4+2x3x4 .

There are also two Casimirs F1 = x1x4 and F2 = x1x3.
We can find the Casimirs by computing the kernel of the matrix

A =


0 1 0 0
−1 0 1 1
0 −1 0 0
0 −1 0 0

 .

The two eigenvectors with eigenvalue 0 are (1, 0, 0, 1) and (1, 0, 1, 0). We obtain
the two Casimirs F1 = x1

1x
0
2x

0
3x

1
4 = x1x4 and F2 = x1

1x
0
2x

1
3x

0
4 = x1x3.
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An alternative method to define the systems is the following. Let Ã = 2I − C be
the Coxeter adjacency matrix. Decompose Ã = A+B where A = (aij) is the
skew-symmetric part of Ã and B its lower triangular part. Define the Lotka-Volterra
system using the formula

ẋi =

n∑
j=1

aijxixj , i = 1, 2, . . . , n .

This method can be used to define Lotka-Volterra systems for any complex simple
Lie algebra (including Bn, Cn, G2 and F4).

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 57 / 74



Example B3

The Cartan matrix is given by

C =

 2 −1 0
−1 2 −2
0 −1 2

 .

Since

2I − C =

0 1 0
1 0 2
0 1 0

 =

 0 1 0
−1 0 2
0 −2 0

+

0 0 0
2 0 0
0 3 0


we may define a B3 Lotka-Volterra system as follows:

ẋ1 = x1x2

ẋ2 = −x1x2 + 2x2x3

ẋ3 = −2x2x3 .

The Casimir for this system is F = x2
1x3.
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Connected Graphs on four vertices

It is well-known that there are 6 connected simple graphs on four vertices. They are
given in the following figure.
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Our generalization of Moser’s Lax Pair

We generalize the Lax pair of Moser as follows:

Instead of considering the set of simple roots Π we begin with

a subset Φ of the positive roots ∆+ which contains Π,
i.e. Π ⊂ Φ ⊂ ∆+.

For each such choice of a set Φ we produce (almost always)

a Lax pair and thus a new Hamiltonian system.

In dimensions 3,4, 5 all such systems produced are Liouville integrable.

Remarks:

In almost all cases we are able to

make the proper choices of the sign of the cij , so that we can
produce a Lax pair.

For example we are able to do this

in all cases in dimension 4 and
in all but five cases in dimension 5.
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Obtaining the Lax Pair: Definition

Defining the matrix L:

Let Π = {α1, . . . α`}.
Let Xα1 , · · · , Xα`

be the corresponding root vectors in g.

Define: L =
∑
αi∈Π

aiXαi .

Finding the matrix B:

For each i, j form [Xαi , Xαj ].

If αi + αj is a root then
include a term of the form ±aiaj [Xαi , Xαj ] in B.

Then we define the system using the Lax pair:

L̇ = [L,B]

For a root system of type An we obtain the KM system.
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Generalization of the Algorithm

We generalize this algorithm as follows:

Consider a subset Φ of ∆+ such that: Π ⊂ Φ ⊂ ∆+.

The Lax matrix is easy to construct: L =
∑
αi∈Φ

ai(Xαi +X−αi).

To construct the matrix B we use the following algorithm:

Consider the set Φ ∪ Φ− which consists of:
all the roots in Φ together with their negatives.

Let: Ψ =
{
α+ β | α, β ∈ Φ ∪ Φ−, α+ β ∈ ∆+

}
Define: B =

∑
αi+αj∈Ψ

cijaiaj(Xαi+αj −X−αi−αj )

where: cij = ±1.
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Example

Let E be the hyperplane of R4 for which the coordinates sum to 0, i.e.

vectors orthogonal to (1, 1, 1, 1).

Let ∆ be the set of vectors in E of length
√

2 with integer coordinates.

There are 12 such vectors in all.

We use the standard inner product in R4 and

the standard orthonormal basis {ε1, ε2, ε3, ε4}.

Then, it is easy to see that: ∆ = {εi − εj | i 6= j}.

The vectors


α1 = ε1 − ε2

α2 = ε2 − ε3

α3 = ε3 − ε4

form a basis of the root system

in the sense that each vector in ∆ is

a linear combination of these three vectors with integer coefficients,
either all nonnegative or all nonpositive.
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Example

For example

ε1 − ε3 = α1 + α2,

ε2 − ε4 = α2 + α3,

ε1 − ε4 = α1 + α2 + α3.

Therefore

Π = {α1, α2, α3}, and

∆+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

Take Φ = {α1, α2, α3, α1 + α2}. Then

Φ ∪ Φ− = {α1, α2, α3, α1 + α2,−α1,−α2,−α3,−α1 − α2 }.
Ψ = {α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3}.
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Example

We obtain the following Lax pair L̇ = [L,B] where:

L
0 a1 a4 0

a1 0 a2 0

a4 a2 0 a3

0 0 a3 0



B
0 −a4a2 a1a2 −a4a3

a4a2 0 −a1a4 a2a3

−a1a2 a1a4 0 0

a4a3 −a2a3 0 0


The Lax pair is equivalent to the following equations of motion:

ȧ1 = a1a
2
2 − a1a

2
4

ȧ2 = a2
4a2 + a2a

2
3 − a2

1a2

ȧ3 = a2
4a3 − a2

2a3

ȧ4 = −a4a
2
2 − a4a

2
3 + a2

1a4
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Example

We obtain the following Lotka-Volterra system:

(with the substitution xi = a2
i followed by scaling)

ẋ1 = x1x2 − x1x4

ẋ2 = x4x2 + x2x3 − x1x2

ẋ3 = x4x3 − x2x3

ẋ4 = −x4x2 − x4x3 + x1x4

The system is integrable.

There exist two functionally independent Casimirs

F1 = x1x3 = detL and
F2 = x1x2x4.

The additional integral is the Hamiltonian

H = x1 + x2 + x3 + x4 = trL2.

Pantelis Damianou (University of Cyprus) Generalized Volterra Systems October 14, 2013 67 / 74



Example

We obtain the following Lotka-Volterra system:

(with the substitution xi = a2
i followed by scaling)
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ẋ3 = x4x3 − x2x3
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Example

The standard Poisson matrix is given by π

π
0 x1x2 0 −x1x4

−x1x2 0 x2x3 x2x4

0 −x2x3 0 x3x4

x1x4 −x2x4 −x3x4 0



The Casimirs are found
by computing the kerA

A
0 1 0 −1
−1 0 1 1
0 −1 −1 0
1 −1 −1 0


Casimirs

The two eigenvectors with eigenvalue 0 are:

(1, 0, 1, 0) and (1, 1, 0, 1).

We obtain the two Casimirs:

F1 = x11x
0
2x

1
3x

0
4 = x1x3 and F2 = x11x

1
2x

0
3x

1
4 = x1x2x4.
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1
4 = x1x2x4.
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Consider the generalized Lotka-Volterra system defined by the Lax matrix

L =


0 a1 0 a5 0
a1 0 a2 0 0
0 a2 0 a3 0
a5 0 a3 0 a4

0 0 0 a4 0


which corresponds to the subset Φ = {α1, α2, α3, α4, α1 + α2 + α3}. Define
the matrix B to be

0 0 a1a2 + a3a5 0 a4a5

0 0 0 a2a3 + a1a5 0
−a1a2 − a3a5 0 0 0 a3a4

0 −a2a3 − a1a5 0 0 0
−a4a5 0 −a3a4 0 0

 .
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The Hamiltonian of the system is H =
1

2

(
a2

1 + a2
2 + a2

3 + a2
4 + a2

5

)
and the

Poisson matrix (of rank 4) is
0 a1a2 2a2a5 0 a1a5

−a1a2 0 a2a3 0 0
−2a2a5 −a2a3 0 a3a4 −a3a5

0 0 −a3a4 0 −a4a5

−a1a5 0 a3a5 a4a5 0

 .

The system is integrable with constants of motion

H =
1

2

(
a2

1 + a2
2 + a2

3 + a2
4 + a2

5

)
and

F = tr

(
L4

4

)
=

1

2
a4

1+a2
1a

2
5+

1

2
a4

5+a2
1a

2
2+2a1a5a2a3+a2

3a
2
5+a2

4a
2
5+

1

2
a4

2+a2
2a

2
3+

1

2
a4

3+a2
4a

2
3+

1

2
a4

4.

The Casimir of the system is C = a2
2 −

a1a2a3

a5
and may be obtained by the

method chopping as follows.
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We have

x · I5 − L =


x −a1 0 −a5 0
−a1 x −a2 0 0

0 −a2 x −a3 0
−a5 0 −a3 x −a4

0 0 0 −a4 x


and the one-chopped matrix is

−a1 x −a2 0
0 −a2 x −a3

−a5 0 −a3 x
0 0 0 −a4


with determinant a4a5x

2 + a1a2a3a4− a2
2a4a5. Dividing the constant term of this

polynomial by the leading term a4a5 we obtain the Casimir C .
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Example

The matrix L is given by

L =



0 a1 0 0 0 a8 0 0

a1 0 a2 0 0 0 a9 0

0 a2 0 a3 0 0 0 a10

0 0 a3 0 a4 0 0 0

0 0 0 a4 0 a5 0 0

a8 0 0 0 a5 0 a6 0

0 a9 0 0 0 a6 0 a7

0 0 a10 0 0 0 a7 0



,
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The corresponding system is given by:

ȧ1 = a1a
2
2 + a1a

2
9 − a1a

2
8,

ȧ2 = a2a
2
3 − a2

1a2 + a2a
2
10 − a2a

2
9,

ȧ3 = a3a
2
4 − a2

2a3 − a3a
2
10,

ȧ4 = a4a
2
5 − a2

3a4,

ȧ5 = a5a
2
6 − a2

4a5 + a5a
2
8,

ȧ6 = a6a
2
7 − a2

5a6 + a6a
2
9 − a6a

2
8,

ȧ7 = −a2
6a7 + a7a

2
10 − a7a

2
9,

ȧ8 = a2
1a8 + a2

6a8 − a2
5a8 + 2 a1a6a9,

ȧ9 = a2
2a9 − a2

1a9 + a2
7a9 − a2

6a9 + 2 a2a7a10 − 2 a1a6a8,

ȧ10 = a2
3a10 − a2

2a10 − a2
7a10 − 2 a2a7a9.

It is a Hamiltonian system with Poisson structure determined by the Poisson matrix

0 a1a2 0 0 0 0 0 −a1a8 a1a9 0

−a1a2 0 a2a3 0 0 0 0 0 −a2a9 a2a10

0 −a2a3 0 a3a4 0 0 0 0 0 −a3a10

0 0 −a3a4 0 a4a5 0 0 0 0 0

0 0 0 −a4a5 0 a5a6 0 a5a8 0 0

0 0 0 0 −a5a6 0 a6a7 −a6a8 a6a9 0

0 0 0 0 0 −a6a7 0 0 −a7a9 a7a10

a1a8 0 0 0 −a5a8 a6a8 0 0 2a1a6 0

−a1a9 a2a9 0 0 0 −a6a9 a7a9 −2a1a6 0 2a2a7

0 −a2a10 a3a10 0 0 0 −a7a10 0 −2a2a7 0


which has rank 8. The Hamiltonian of the system is
H2 = 1

2

(
a2

1 + a2
2 + · · ·+ a2

10

)
. A constant of motion is obtained using Moser’s

technique.
If we delete the odd numbered rows and columns of L2 we get the matrix

Λo(L
2) =


a2

1 + a2
2 + a2

9 a2a3 a1a8 + a6a9 a7a9 + a2a10

a2a3 a2
3 + a2

4 a4a5 a3a10

a1a8 + a6a9 a4a5 a2
5 + a2

6 + a2
8 a6a7

a7a9 + a2a10 a3a10 a6a7 a2
7 + a2

10

 =


B1 A1 A4 A6

A1 B2 A2 A5

A4 A2 B3 A3

A6 A5 A3 B4

 .

We have

Ȧ1 = ˙(a2a3)

= ȧ2a3 + a2ȧ3 = (a2a
2
3 + a2a

2
10 − a2

1a2 − a2a
2
9)a3 + a2(a3a

2
4 − a2

2a3 − a3a
2
10)

= a2a3(a2
3 + a2

4 − a2
1 − a2

2 − a2
9)

= A1(B2 −B1)

and similarly the new variables Bi, Ai satisfy the system

Ḃ1 = 2(A2
1 +A2

6 −A2
4) ,

Ḃ2 = 2(A2
2 −A2

1 −A2
5) ,

Ḃ3 = 2(A2
3 +A2

4 −A2
2) ,

Ḃ4 = 2(A2
5 −A2

3 −A2
6) ,

Ȧ1 = A1(B2 −B1) ,

Ȧ2 = A2(B3 −B2) ,

Ȧ3 = A3(B4 −B3) ,

Ȧ4 = A4(B1 −B3) + 2A3A6 ,

Ȧ5 = A5(B2 −B4)− 2A1A6 ,

Ȧ6 = A6(B4 −B1)− 2A3A4 + 2A1A5 .

(1)

This system can be written in Lax pair form ˙Λo(L2) =
[
C,Λo(L

2)
]

with

C =


0 A1 −A4 A6

−A1 0 A2 −A5

A4 −A2 0 A3

−A6 A5 −A3 0

 .

It is Hamiltonian with Hamiltonian function

H = tr

(
Λo
(
L2
)2

2

)
=

1

2
(B2

1 +B2
2 +B2

3 +B2
4)+A2

1+A2
2+A2

3+A2
4+A2

5+A2
6

and Poisson matrix

0 0 0 0 A1 0 0 −A4 0 A6

0 0 0 0 −A1 A2 0 0 −A5 0
0 0 0 0 0 −A2 A3 A4 0 0
0 0 0 0 0 0 −A3 0 A5 −A6

−A1 A1 0 0 0 0 0 0 0 0
0 −A2 A2 0 0 0 0 0 0 0
0 0 −A3 A3 0 0 0 0 0 0
A4 0 −A4 0 0 0 0 0 0 A3

0 A5 0 −A5 0 0 0 0 0 −A1

−A6 0 0 A6 0 0 0 −A3 A1 0


.

It has 2 Casimir functions B1 +B2 +B3 +B4 and A1A2A4 +A2A3A5. The
function

F = A1A2A4 +A2A3A5 = a2a3a4a5 (a1a8 + a6a9) + a3a4a5a6a7a10 =

a1a2a3a4a5a8 + a2a3a4a5a6a9 + a3a4a5a6a7a10

is a constant of motion for the original system. The integrals H2, H4, H6, F
together with the two Casimirs given by

C1 = a1a3a5a7,

C2 =
√

detL− C1 = a1a4a6a10 + a2a4a7a8 − a4a8a9a10.

ensure the integrability of the system.
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THANK YOU!
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