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Hamiltonian PDEs

An evolutionary system of PDEs

F = uit − f i(t, x, uj , ujx, ujxx, . . .) = 0

admits a Hamiltonian formulation if

uit = Aij
(
δH

δuj

)
where A is a Hamiltonian operator, i.e. a differential operator

A = aijσDσ such that A∗ = −A and [A,A] = 0

Dσ = Dx ◦ · · · ◦Dx (σ times).



Symmetries

A Hamiltonian equation shows a correspondence between
conservation laws and symmetries.
Generalized symmetries are vector functions
ϕi = ϕi(uj , ujx, u

j
xx, . . .) such that

`F (ϕi) = Dtϕ
i − ∂f i

∂ujσ
Dσϕ

j = 0

where `F is the Fréchet derivative.



Conservation laws

A conservation law is a one-form ω = Adx+Bdt which is closed
modulo the equation:

dω = ∇F

where ∇ = aτσk DτσF
k. The vector function

ψk = ψk(u
j , ujx, u

j
xx, . . .) = (−1)|τσ|Dτσa

τσ
k

represents uniquely the conservation law and fulfills the
equation

`∗F (ϕi) = −Dtψi + (−1)|σ|Dσ

(
∂f j

∂uiσ
ψj

)
= 0

where `∗F is the formal adjoint of `F ;



A necessary condition

If an equation admits a Hamiltonian formulation, this implies
that A maps conservation laws into symmetries:

`F ◦A = (A′)∗ ◦ `∗F A: almost-Hamiltonian op.

The condition can be extended to all integrability operators:

`∗F ◦ S = S′ ◦ `F S: almost-symplectic op.

`F ◦R = R′ ◦ `F R: recursion operator

`∗F ◦ C = (C ′)∗ ◦ `∗F C: co-recursion operator

Note that A′, S′, R′, C ′ are arbitrary.

Almost: it is a necessary condition . . .



Cotangent covering

Kersten, Krasil’shchik, Verbovetsky, JGP 2003.
Introducing new variables pk, pkx, pkxx, . . . we can represent
operators by linear functions:

A(ψ) = aijσDσψj ⇔ A = aijσpjσ

Then a Hamiltonian operator fulfills the equations

T ∗ :

{
`∗F (p) = −pi,t + (−1)|σ|Dσ

(
∂fj

∂uiσ
pj

)
= 0

F = uit − f i = 0
and `F (A) = 0.

The system T ∗ is the cotangent covering.



Tangent covering

Introducing new variables qk, qkx, qkxx, . . . we can represent
operators by linear functions:

R(ϕ) = aiσj Dσϕ
j ⇔ A = aiσj q

j
σ

Then a recursion operator fulfills the equations

T :

{
`F (q) = qit −

∂f i

∂ujσ
qjσ = 0

F = uit − f i = 0
and `F (A) = 0.

The system T ∗ is the cotangent covering.



Invariance

Tangent and cotangent coverings are invariant with respect to
point transformations.

The proof is easy for the tangent covering, but it is much more
complicated for the cotangent covering, and it needs the
absence of differential relations between the components of the
linearization.



Example: Hamiltonian operators for KdV

The KdV equation: ut = uux + uxxx
The linearization: `F = Dt − uDx − ux −Dxxx

The adjoint linearization: `∗F = −Dt + uDx +Dxxx

The cotangent covering for the KdV equation:{
pt = pxxx + upx
ut = uxxx + uux

The equation `F (A) = 0 has the two solutions:

A1 = px or A1 = Dx

A2 =
1

3
(3p3x + 2upx + uxp) or A2 =

1

3
(3Dxxx + 2uDx + ux)



Example: recursion operator for KdV

The tangent covering of KdV:

T :

{
qt = uxq + uqx + qxxx
ut = uxxx + uux

Unfortunately, the equation for recursion operators `F (R) = 0
has the only trivial solution R = q.
However, there is a conservation law on T :
ω = qdx+ (uq + qxx)dt. We can introduce a new non-local
variable w such that

wx = q, wt = uq + qxx.

Then we have the non-local recursion operator

R = qxx +
2

3
uq +

1

3
uxw or R = Dxx +

2

3
u+

1

3
uxD

−1
x



Non-local operators

Non-local variables can be introduced on tangent and cotangent
covering through the following
Theorem (Kersten, Krasil’shchik, Verbovetsky):

I There is a 1-1 correspondence between cosymmetries of
F = 0 and conservation laws on T linear in qkσ.

I There is a 1-1 correspondence between symmetries of
F = 0 and conservation laws on T ∗ linear in pkσ.



Applications to Dubrovin–Novikov operators

The cotangent covering of a hydrodynamic-type system is:{
pi,t = (V k

i,j − V k
j,i)u

j
xpk + V k

i pk,x
uit = V i

j (u)ujx

A first-order Dubrovin–Novikov Hamiltonian operator:

Ai = gijpjx + Γijk u
k
xpj .

Tsarev’s compatibility conditions are the coefficients of the
linear equation in pkσ, `F (A) = 0:

DtA
i − V i

j,ku
j
xA

k − V i
jDxA

j = 0 ⇔
{
gikV j

k = gjkV i
k

∇iV k
j = ∇jV k

i



Applications to Ferapontov–Mokhov operators

For every symmetry ϕi∂/∂ui there is a conservation law on the
cotangent covering of any hydrodynamic-type equation:

ω = ϕipidx+ V i
j ϕ

jpidt

Hydrodynamic-type systems admit time and space translation
symmetries: two nonlocal variables sx = V i

j u
j
xpi and rx = uixpi

which yield a general form of Ferapontov operators:

A = gijpj,x + Γijk u
k
xpj + αV i

ku
k
xs+ β(V i

ku
k
xr + uixs) + γuixr

equivalently

A = gijDx + Γijk u
k
x + αV i

ku
k
xD
−1V j

h u
h
x+

β(V i
ku

k
xD
−1
x ujx + uixD

−1
x V j

h u
h
x) + γuixD

−1
x ujx



Compatibility conditions

The compatibility conditions between a Ferapontov–Mokhov
operator and a hydrodynamic-type system are the coefficients of
the linear equation in pkσ, `F (A) = 0:

DtA
i − V i

j,ku
j
xA

k − V i
jDxA

j = 0

iff
gikV j

k = gjkV i
k

∇iV k
j = ∇jV k

i

Rijkl = α(V i
kV

j
l − V

i
l V

j
k ) + β(V i

kδ
j
l + V j

k δ
i
l − V i

l δ
j
k − V

j
l δ

i
k)

+ γ(δikδ
j
l − δ

i
lδ
j
k)



Application to third-order DN operators

Dubrovin–Novikov operators can be defined for arbitrary
orders. Here we consider the third order ones:

Aij3 =gij(u)D3
x + bijk (u)ukxD

2
x

+ [cijk (u)ukxx + cijkm(u)ukxu
m
x ]Dx

+ dijk (u)ukxxx + dijkm(u)ukxu
m
xx + dijkmn(u)ukxu

m
x u

n
x,

Potemin’s canonical form in Casimirs:

Aij3 = Dx(gijDx + cijk u
k
x)Dx

We restrict our consideration to hydrodynamic-type systems in
these Casimirs. Then they can be written in conservative form:
V i
j = (V i),j



Compatibility conditions

Theorem Let A3 be a Hamiltonian operator. Then
uit = V i

j u
j
x = (V i),ju

j
x admits a Hamiltonian formulation with

A3 if and only if
gimV

m
j = gjmV

m
i

cmkjV
m
i + cmikV

m
j + cmjiV

m
k = 0,

V k
i,j = gkscsmjV

m
i + gkscsmiV

m
j

(1)

Theorem. The above system is in involution. Its solution
depends on at most (1/2)n(n+ 3) parameters.



Properties of the systems of conservation laws

Following a construction of Agafonov and Ferapontov
(1996-2001) we associate to each system uit = (V i),ju

j
x a

congruence of lines in Pn+1 with coordinates [y1, . . . , yn+2]

yi = uiyn+1 + V iyn+2

Theorem.

I The congruence is linear: there are n linear relations
between ui, V i, uiV j − ujV i.

I The system is linearly degenerate and in the Temple class.

I V i = ψiαw
α, where ψiα is determined by gij = ϕαβψ

α
i ψ

β
j and

wα are linear functions.



Finding hydrodynamic-type systems

We recall that the metric gij of a third-order Hamiltonian
operator is a Monge metric, and corresponds to a quadratic line
complex. There is a projective classification of Monge metrics
of Hamiltonian operators for n = 1, 2, 3, 4 (Ferapontov, Pavlov,
V., JGP 2014, IMRN 2016).

The system of compatibility conditions is

I linear algebraic with respect to g;

I linear algebraic with respect to wα.

It is very easy to find systems associated with a given operator
and operators associated with a given system.



Hamiltonian, momentum and more

The above systems of conservation laws all admit non-local
Hamiltonian, momentum and Casimirs. They all are new
non-local conserved quantities.
Let us set ψγk = ψγkmu

m + ωγk , and wγ = ηγmum + ξγ .
Let us set ui = bix; the system becomes bit = V i(bx).
Theorem.

I Hamiltonian op. A3 = −gij(bx)Dx − cijk (bx)bkxx

I Hamiltonian H = −
∫
ϕβγ [

(
1
3η

γ
pψ

β
qmbmx + 1

2ω
β
p η

γ
q

)
bpbq +

x
(
1
2ψ

β
pqξγbpb

q
x + ξγωβq bq

)
]dx

I n Casimirs Cα =
∫ (

1
2ψ

α
mkb

k
x + ωαm

)
bmdx

I momentum P = −
∫ (

1
3ϕβγω

β
q ψ

γ
pmbmx + 1

2ϕβγω
β
pω

γ
q

)
bpbqdx



Invariance of the hydrodynamic-type system

Theorem. The class of conservative systems of hydrodynamic
type possessing third-order Hamiltonian formulation is invariant
under reciprocal transformations of the form

dx̃ = (aiu
i + a)dx+ (aiV

i + b)dt
dt̃ = (biu

i + c)dx+ (biV
i + d)dt



Classification results

Theorem. Let uit = (V i)x be a hydrodynamic-type system,
and suppose that it admits a Hamiltonian formulation via a
third-order Dubrovin-Novikov operator whose Casimirs are ui.
Then:

n = 2 The system is linearisable.

n = 3 The system is either linearisable, or equivalent to the
system of WDVV equations (to be discussed); from
Castelnuovo’s classification of linear line congruences.

n = 4 Far more complicated: there exists no classification of
linear congruences in P5.



Example: WDVV equations in 3-comp.

u1t = u2x,

u2t = u3x,

u3t = ((u2)2 − u1u3)x,

with the nonlocal Hamiltonian,

H = −
∫ (

1

2
u1
(
∂x
−1u2

)2
+ ∂x

−1u2∂x
−1u3

)
dx.

Setting u1 = fxxx, u2 = fxxt, u
3 = fxtt we obtain

fttt = f2xxt − fxxxfxtt, which is the simplest case of WDVV
equations (Ferapontov, Galvao, Mokhov, Nutku, 1995). It is
bi-Hamiltonian and up to a non-trivial transformation is the
3-wave equation (Zakharov, Manakov, ∼1970).



Example: WDVV system in 6-comp.

Dubrovin 1996; Ferapontov-Mokhov 1998; Pavlov-V. 2015. We
have a pair of hydrodynamic type systems in conservative form:

aiy = (vi(a))x, aiz = (wi(a))x,

where

v1 = a2, w1 = a3, v2 = a4, v3 = w2 = a5, w3 = a6,

v4 = fyyy =
2a5 + a2a4

a1
, v5 = w4 = fyyz =

a3a4 + a6

a1
,

v6 = w5 = fyzz =
2a3a5 − a2a6

a1
,

w6 = fzzz = (a5)2 − a4a6 +
(a3)2a4 + a3a6 − 2a2a3a5 + (a2)2a6

a1
.



Monge metric for 6-components WDVV

gik(a) =



(a4)2 −2a5 2a4 −(a1a4 + a3) a2 1
−2a5 −2a3 a2 0 a1 0
2a4 a2 2 −a1 0 0

−(a1a4 + a3) 0 −a1 (a1)2 0 0
a2 a1 0 0 0 0
1 0 0 0 0 0


Remark: the metric can be found in few seconds by computer.



Example: generic value of n

The system of conservation laws:

u1t = u2x, u2t = u3x, ..., un−1t = unx, unt = [u1u3 − (u2)2]x.

The third-order Hamiltonian operator’s Monge metric:

gij =


2a2 −a1 0 1
−a1 0 1

0 1
1 0

1 0 0


and the Hamiltonian is

H = −1

2
a1(D−1a2)2 +

1

2

N∑
m=2

(D−1am)(D−1aN+2−m).

Problem: integrability for n > 4?



Open problems

I Integrability for n > 4 of the systems of conservation laws.

I Geometry of WDVV equations. All of them have a
third-order H.o.

I Non-local Hamiltonian operators of second and third order:
compatibility with hydrodynamic-type systems.

I Extension to symplectic operators, local and non-local.

I Recursion operators?



Symbolic computations

Within the REDUCE CAS (now free software) we use the
packages CDIFF and CDE, freely available at
http://gdeq.org.

CDE (by RV) can compute symmetries and conservation laws,
local and nonlocal Hamiltonian operators, Schouten brackets of
local multivectors, Fréchet derivatives (or linearization of a
system of PDEs), formal adjoints, Lie derivatives of
Hamiltonian operators.

Cooperation with AC Norman (Trinity College, Cambridge) to
improvements and documentation of REDUCE’s kernel.

Forthcoming book, in cooperation with JS Krasil’shchik and
AM Verbovetsky: The symbolic computation of integrability
structures for partial differential equations, to appear in the
series Texts and Monographs in Symbolic Computation,
Springer, 2017.



Thank you!
Contacts: raffaele.vitolo@unisalento.it


