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k-cKP hierarchy

k-constrained KP hierarchy

Consider a microdifferential Lax operator:

; 0
= ;D™ D= —
L:=D+ ;21 U;D e

with functions U; = U;(t1, to, t3, ...), which depend on an arbitrary
(finite) number of independent variables t; := x, o, t3, ...
KP hierarchy is the following family of Lax equations for L:
aiLt; = [B,‘, L] aj € C i €N
B; := (L)>o is a differential part of the i-th power of L. From the
latter Zakharov-Shabat equations arise: Ly, =Lt t, =
[anat,, — B, CVmatm _Bm] = amBn,tm _Oéan,t,,“!‘[an Bm] =0
If n =2, m = 3 the latter is equivalent to the KP eq. (U; := U):

1 3
(043 Ut3 - ZUXXX - 3UUX)X = Za% Ut2t2~



k-cKP hierarchy

k-constrained KP hierarchy

Consider the symmetry reduction of the KP hierarchy:
(Lk)<o = q./\/loD_er

where Mat,,/(C) > My is a constant matrix, and functions
a=1(g1,...,q/), r = (r1, ..., r) are fixed solutions of the system:

o, = Bul@)  anry, = —Bi{r}  Bai=(L")s0
Reduced flows admit the following Lax representation
[Li, M)] =0 Ly :=LK=Bx+qMoD*" M, =a,d:, — B,

The latter is equivalent to the (1 + 1)-dimensional integrable
systems for functional coefficients U; and functions q, r:

Uitn — Pin[Ul7U27"'7kal7q7r] I:17k_1

anQt, = Ba[Ui, q,r]{a} anre, = —B[Ui, q,r]{r}



k-cKP hierarchy

Examples

l.k=1,n=2: Ly =D+qMoD1q*, M, = id;, — D> —2qMoq*
with M§ = M. Lax equation [L1, Mp] = 0 is equivalent to the
NLS:

9t = Qux + 2 (qMoq") q.

2.k=2n=2: Ly =D?>+2u+qMoD1q*, My =id,, —D?—2u
with Mg = —Mj. Equation [Ly, M| = 0 is equivalent to
the Yajima-Oikawa system:

Gy = Qo+ 200, i, = (aMoa"),.
3. k=2,n=3: Ly =D?>+2u+qMoD1q",
M3 = 0y, — D3 — 3uD — %(ux + gMoq*), ME=—-M
[Lo, M3] = 0 is equivalent to the KdV with self-consistent sources:

Qt; = Quoxx + 3UQqx + %qu + %qMOq*qa
Ut = %UXXX + 3qu + % (quOq* - qMOq;k()X .



k-cKP hierarchy

Examples

4. Vector generalization of the modified KdV equation
Qi; = Qxxx +3 (q./\/loq*) qx + 3 (qX/\/loq*) q MS = Mo.

5. Generalization of the Boussinesq equation:

304%ut2t2 = (—Upx — 6u? + 4(gMog*))xx 0 = Mo
a2Qt, — Qux — 2uq =10

6. Vector generalization of the Drinfeld-Sokolov-Wilson system:

di; = Qxxx T 3uqx + %qu q=q Mo = Moy = My
Uy, = (aMoq " )x



k-cKP hierarchy

k-constrained KP hierarchy
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(2+41)-k-cKP hierarchies

(2+41)-dimensional k-cKP hierarchies

Introduce (2+1)dimensional generalizations of the k-cKP hierarchy:

k .
[Lk7 Mn] =0 L, = aﬁy — Z uiD" — q/\/loner
i=0
My = ands, — > v;D/ Mp{q} =0 M {r}=0
j=0
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(2+41)-k-cKP hierarchies

Examples: Davey-Stewartson (DS-I11) and
(241)-dimensional Yajima-Oikawa systems

1. k=1,n=2:
Ly =08, —qMoD™'q* M, =id, — D* —2u

with u = u(x,y, t2) = t(x, y, t2), Mo = M.
Equation [L1, Mp] = 0 is equivalent to the DS-III system:

iqt, = Qux — 2uq uy = (qMoq*)x
2. k=2,n=2:
Ly =id, — D* —2u — qMoD 1q* My = i0y, — D? —2u

with My = - Mg, u = 0.
Equation [Lp, M,] = 0 is equivalent to the (2+1)-dimensional
generalization of the Yajima-Oikawa system:

iug, = iuy + (qMoq™)x i9e, = Qxc +2uq



(2+41)-k-cKP hierarchies

Examples: KP equation with self-consistent sources

3. k=2,n=3:

L, = id, — D> — 2u — qMoD~'q*,
Ms = 8y, — D3 —3uD — 3 (ux + iD7*{u,} + qMoq*),

with Mg = —Mo, u = 0. Equation [Ly, M3] = 0 is equivalent to
the KP equation with self-consistent sources:

At; = Qo + 3Uqx + % (UX + iDil{uy} + qMOq*) q,
[Uts - %“XXX — 3uuy + % (aMoa} — qxMoq®), —

—%i (q/\/loq*)y}X = _%”yy'



(2+41)-k-cKP hierarchies

Examples: (241)-dimensional Drinfel'd-Sokolov-Wilson
system

4 k=3,n=3:

L3=0r—D3%—uD—3u1x—qMoD 1q"
Ms = 8y, — D3 — D — Luy «

With the additional reduction u; = 0y = u, Mg = M{§ = Mo
Lax equation [L3, M3] = 0 is equivalent to the following
(2+1)-dimensional generalization of the Drinfel’d-Sokolov-Wilson
equation:

1
At; = Ooxx + UQx + §qu Uty = Uy + 3(qM0qT)x-



Extended (2+41)-k-cKP hierarchies

New extensions of the (2+41)-k-cKP hierarchies

We introduce the following generalizations of
the (241)-dimensional k-constrained KP hierarchies:

Ly = BkOr, — Zj-;o uD) — qMoD T

My = ands, — Yo viD' = 3 _galilMoD T [1 = j], 1=1,...
Mai{a} = (L) Hay M {r} = a(L7)H{r}

up = uj(x, Tk, ta), Vi = Vi(X, Tk, tn), apn, Pk, €C

where Mg is M x M constant matrix, uj and v; are N x N matrix
functions; q and r are N x M matrix functions respectively;

qlj] and r[j] have the form: q[j] := (LyY{a}, r'[]] := ((LLY{r}) .



Extended (2+41)-k-cKP hierarchies

New extensions of the (2+41)-k-cKP hierarchies

Proposition

Lax equation [Lx, M, ] = 0 is equivalent to the system:
[Lk, My ]>0 =0
Mn{a} = C/(Lk)l+1{q} M;,{r} _ C/(LZ)IJrl{r}

In case k =0, n =2, | =1 Lax equation [Lx, M, ;] =0is
equivalent to the following matrix generalization of the DS-system

(v =)

a2qt, = CQxx + Clqyy + cavoq + ClqMOS
—oor, =crl + c1r;y +crlvg+ caSMor'
voy = —2(aMor ")« Se=—2(r"q),

where an,c,c1 € C, vp and S are N x N and M x M matrix
functions; q and r are N x M matrix functions respectively.



Extended (2+41)-k-cKP hierarchies

Examples

New extensions of the (2+1)-k-cKP hierarchies also contain:
@ (2+41)-dimensional mKdV equation

Qt; — Gxxx — Qyyy + 39x / |q|>2<dy + Sﬂqy / |q|}2,dx +

+3q/(aqy)ydx +3q /(qxq)xdy =0.

@ Nizhnik equation

Uty — Usx — Uyyy + 30« { </ uXdy> u} + 30, {u </ uydx>} =0

e Matrix (2+1)-dimensional generalizations of Yajima-Oikawa,
Drinfel'd-Sokolov systems, new extensions of KP equations
with self-consistent sources.



Solution generating method

Solution generating method for (2+1)-dimensional k-cKP
hierarchies and their extensions

Theorem. Let matrices of functions ¢ and v satisfy L{p} = @A,

L™{¢)} = )/ with constant matrices A, A and the following
operator

L:=ad; — Z uiD" + qMoD~ T, ae C
i=0
Construct the binary Darboux transformation (BDT):
-1
W=1-¢(C+DHyTe}) DT
with some constant matrix C. Then:
L:i=WIW™ =00, - ;D" +aMoD ¢ + dMDWT
i=0

with M= CA—ATC, &= (C+DLpTp})
VT = (C+DYyT}) "9, §=W{aq}, #=WL{r}.



Solution generating method

Solution generating method for (2+1)-dimensional k-cKP
hierarchies and their extensions

In a similar way we can dress both operators from the extensions of
(2+1)-dimensional k-cKP hierarchies:

= Bidn, — Xj—o uiD) —aMoD T
M”” = apdy, — 2o viD' = & Yj_oalIMoD T[], 1=1,...
Mn,l{q} = C/(Lk)l+1{q} M;,I{r} — CI(LZ)I+1{r}

Let matrices of functions ¢ and v satisfy:

L{oy =@, Li{w} =9A,
Mo{e} = alif o), M7 v} = a(Lp) "y}

Using binary Darboux transformation

W=1—-o (C + D‘l{w%}>_1 Dyt

we obtain...



Solution generating method

Solution generating method for (2+1)-dimensional k-cKP
hierarchies and their extensions

k

L= WLW = 840y, — . ;D) — gMoD~ 1% T + dM DU
j=0
My = WMn W™t = andy, — 32 00" — ¢ 31 GLIMoD T [ — j]+

i=0
I
—+¢ Z (D[S]MlD*l\UT[/ — S]
s=0

with My = CA=ATC,  d=¢(C+DHypTp}) 7,

VT = (C+DHyTeh) w7, a=W{a}, #=w17{r},
o[j] = (Ly{@} Wil = (LY{v},  alil = (L{a),

] = (L) {#}.



Conclusions

Conclusions

o New generalizations of the (241)-dimensional k-constrained
KP hierarchies include matrix DS system, new matrix
generalization of the Nizhnik system, (241)-dimensional
generalizations of the Yajima-Oikawa system, KP equations
with self-consistent sources.

@ The proposed solution generating method is based on
invariant transformations of the integro-differential operators
via BDT. It allows to construct solutions of the corresponding
nonlinear systems starting with an arbitrary seed solution.
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Conclusions

Thank you for your attention!
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