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Abstract. We describe CDIFF, a set of symbolic computation packages devoted
to computations in the geometry of Differential Equations (DEs, for short). The
development was carried out by P. Gragert, P.H.M. Kersten, G. Post and G. Roelofs
at the University of Twente, The Netherlands, with latest contributions by R. Vitolo.

The package is distributed on the Geometry of Differential Equations web site
http://gdeq.org (GDEQ for short). The ‘Twente’ part of the package is included in
the official REDUCE distribution.

We start from an installation guide for Linux and Windows. Then we focus on
concrete usage recipes for the computation of higher symmetries, conservation laws,
Hamiltonian and recursion operators for polynomial differential equations. All pro-
grams discussed here are shipped together with this manual and can be found at the
GDEQ website. The mathematical theory on which computations are based can be
found in refs. [12, 13].

1. Introduction

This brief guide refers to using CDIFF, a set of symbolic computation packages
devoted to computations in the geometry of DEs. The name of the package, CDIFF,
comes from the fact that it is aimed at defining differential operators in total derivatives
in order to do computations involving them. Such operators are called C-differential
operators (see [12]). CDIFF runs in the computer algebra system REDUCE. Recently,
REDUCE 3.8 became free software, and can be downloaded here [1]. This was an
important motivation for making our computations accessible to a wider public, also
through this user guide.
The development of the CDIFF package was started by Gragert and Kersten for

symmetry computations in DEs. Then CDIFF was partly rewritten and extended by
Roelofs and Post. This part of the CDIFF package consists of 7 files, but only the main
three files are documented [8, 9, 10]. This software and the related documentation can
be found in the Geometry of Differential Equations (GDEQ for short) web site [2].
Recently, the author of this user guide wrote additional software which runs ‘on top’

of CDIFF and is especially designed for computations of integrability-related structures
(such as Hamiltonian, symplectic and recursion operators) for systemd of differential
equations with an arbitrary number of independent or dependent variables. The aim
of this manual is to introduce the reader to the above computations.
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The readers are warmly invited to send questions, comments, etc., both on the com-
putations and on the technical aspects of installation and configuration of REDUCE,
to the author of this document.
Acknowledgements. My warmest thanks are for Paul H.M. Kersten, who explained

to me how to use the original CDIFF package for several computations of interest in
the Geometry of Differential Equations. I also would like to thank J.S. Krasil’shchik
and A.M. Verbovetsky for constant support and stimulating discussions which led me
to write this text.

2. Installation

In order to use CDIFF packages you should be able to write REDUCE programs using
CDIFF and run them in the REDUCE interactive shell. So, you need two programs: a
recent version of REDUCE with CDIFF package and a text editor preferably oriented
to program development.
We stress that in Windows most of the technical difficulties related to installation

and configuration are due to the lack of a REDUCE installer.

2.1. Installation of REDUCE with CDIFF. In order to install REDUCE it is
enough to download from here [1] a precompiled binary for your operating system (e.g.,
32-bit or 64-bit Debian-based Linux like Debian itself or Ubuntu, 32-bit Windows) and
uncompress it in your computer in a location of your choice. Precompiled binaries
starting from 8 October 2010 contain CDIFF in the form of a REDUCE package.
In Linux you can also download .deb packages at the GetDeb website [3].
For the moment CDIFF has been tested under Linux (both 32bit and 64bit) and

Windows XP; please contact the author of this guide if you tested the package with
positive results under Mac or other versions of Windows like Vista or Windows 7.
From now on we will assume that the binary executable of REDUCE is in the path

of the executables of your operating system. A typical location in Linux would be
/usr/local/bin. You might put a link instead of the binary executable.

A REDUCE program using CDIFF package can be written with any text editor; it is
customary to use the extension .red for REDUCE programs, like program.red. If you
wish to run your program, just run the REDUCE executable. After starting REDUCE,
you would see something like

Reduce (Free CSL version), 08-Oct-10 ...

1:

At the prompt 1: write in "program.red";. Of course, if the program file program.red
is not in the place where the REDUCE executable is, you should indicate the full path
of the program, and this depends on your system. In Linux, assuming that you are
the user user and your program is in the subdirectory Reduce/computations of your
home directory, you have something like

in "/home/user/Reduce/computations/program.red";

In Windows, assuming that you are the user user and your program is in the subdirec-
tory Reduce\computations of the Desktop folder, you would write
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in "C:\Documents and Settings\user\Desktop\Reduce

\computations\program.red";

Remember that each time you run REDUCE from a command shell, REDUCE inherits
your current path from the shell unless you use an absolute path as above. However,
if you start REDUCE with the graphical interface (see below) you can always use the
leftmost menu item File>Open... in order to avoid to write down the whole absolute
path.

2.2. Choice of an editor for writing REDUCE programs. Now, let us deal with
the problem of writing REDUCE programs.
Generally speaking, any text editor can be used to write a REDUCE program. A

more suitable choice is an editor for programming languages. Such editors exist in
Linux and Windows, a list can be found here [5].
A suggested text editor in Windows is notepad++. This editor is easy to install, it

has support for many programming languages (but not for REDUCE!), and has a GPL
free license, see [4]. Similar tools in Linux are kwrite and gedit.
However, the only IDE (Integrated Development Environment) for developing pro-

grams and running them inside the editor itself exists for the great text editor emacs,
which runs in all operating systems, and in particular Linux and Windows. We stress
that an IDE makes the developing-running-debugging cycle much faster because every
step is performed in the same environment.
Installation of emacs in Linux is quite smooth, although it depends on the Linux

distribution; usually it is enough to select the package emacs in your favourite package
management tool, like aptitude, synaptic, or kpackage. In order to install emacs
on Windows one has to work a little bit more. See here [6] for more information.
Assuming that emacs it is installed and working, the REDUCE IDE for emacs can be
found here [11]. We refer to their guide for the installation (the procedure is the same
for both Linux and Windows). I tested the IDE with emacs 23.2.1 under Debian-based
Linux systems (Debian Etch and Squeeze 32-bit and 64-bit, Ubuntu 11.04 64-bit) and
Windows XP and it works fine for me.

Suppose you have emacs and its REDUCE IDE installed, then there is a last configu-
ration step that will make emacs and REDUCE work together. Namely, when opening
for the first time a REDUCE program file with emacs, go to the REDUCE>Customize...
menu item and locate the ‘REDUCE run Program’ item. This item contains the com-
mand which is issued by emacs from the REDUCE IDE when the menu item Run

REDUCE>Run REDUCE is selected. Change the command to:

• under Linux (user and location as above):

reduce -w

• under Windows (user and locations as above):

reduce.exe

This setting will run REDUCE inside emacs. If you prefer the (slower) graphical inter-
face to REDUCE, remove ‘-w’. Note that the graphical interface will produce LATEX
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output, making it much more readable. This behaviour can be turned off in the graph-
ical interface by issuing the command off fancy;.

3. Working with CDIFF

All programs that we will discuss in this manual can be found inside the subfolder
test in the folder which contains this manual. There are some conventions that I
adopted on writing programs which use CDIFF.

• Test files have the following names:

equationname typeofcomputation.red

where equationname stands for the shortened name of the equation (e.g. Ko-
rteweg–de Vries is always indicated by kdv), and typeofcomputation stands
for the type of geometric object which is computed with the given file, for
example symmetries, Hamiltonian operators, etc.. This string also includes a
version number. The extension .red will tell emacs to load the reduce-ide mode
(provided you made the installation steps described in the reduce-ide guides).

• More specific information, like the date and more details on the computation
done in each version, are included as comment lines at the very beginning of
each file.

If you use a generic editor, as soon as you are finished writing a program, you may run
it from within REDUCE by following the instructions in the previous section.
In emacs with REDUCE IDE it is easier: issuing the command M-x run-reduce (or

choosing the menu item Run REDUCE>Run REDUCE) will split the window in two halves
and start REDUCE in the bottom half. If you are running PSL REDUCE you must first
issue the command lisp set bndstk size 1000000; from within REDUCE, in order
to avoid memory problems. If you are running CSL REDUCE there is no need of that
instruction. Note that CSL and PSL are two different interpreters of Standard Lisp;
REDUCE can use only one at a time. The precompiled binaries which are available
come with the CSL interpreter. If you wish to try the PSL interpreter then you have to
download the source code of REDUCE and recompile it following the instructions on
REDUCE website. In any case REDUCE shows up the type of interpreter at startup,
see 2.1.
Then you may load the program file that you were editing (suppose that its name is

program.red) by issuing in "program.red"; at the REDUCE prompt. In fact, emacs
lets REDUCE assume as its working directory the directory of the file that you were
editing.
Results of a computation consist of the values of one or more unknown. Suppose that

the unknown’s name is sym, and assume that, after a computation, you wish to save
the values of sym, possibly for future use from within REDUCE. Issue the following
REDUCE commands (of course, after you finish your computations!):

off nat;

out "file_res.red";

sym:=sym;

shut "file_res.red";

on nat;
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The above commands will write the content of sym into the file file res.red, where
file stands for a filename which follows the above convention. The command off nat;

is needed in order to save the variable in a format which could be imported in future
REDUCE sessions. If you wish to translate your results in LATEX, see the package rlfi
and its own documentation.
Working remotely with REDUCE is not difficult and it is highly recommended for

big computations that a server can run more efficiently and without interruptions. A
method of choice to do this is described by the following steps:

(1) login to the remote server with ssh;
(2) start emacs as a daemon on the server by the command emacs --daemon (only

from version 23.1!);
(3) run emacsclient -c file.red. That program will connect to the emacs dae-

mon and open the requested file.
(4) run REDUCE (if you installed the reduce IDE everything is easier, otherwise

you should open a shell within emacs and issue the command reduce);
(5) exit emacsclient normally (C-x C-c). This will not kill the daemon, that will

keep your computation running until the end.
(6) login again when you wish to check the computation.

In next sections we will describe some examples of computations with CDIFF. The
parts which are shared between all examples are described only once. We stress that all
computations presented in this document can be downloaded at the GDEQ website [2],
and that they are run in the REDUCE environment by typing in "program.red"; at
the REDUCE prompt, as explained above. Moreover, all examples can be run at once
by the shell script cdiff.sh to test if the system is working properly and results are
the same as obtained previously.
Each computation consists of two parts: setting up the jet space and the equation,

and solving the problem using suitable ansatz for the unknown functions. We will
emphasize this division only in the first example.
Remark. The mathematical framework on which the computations are based can

be found in [12].

4. Higher symmetries

In this section we show the computation of (some) higher symmetries of Burgers’equation
B = ut − uxx + 2uux = 0. The corresponding file is bur hsy1.red and the results of
the computation are in results/bur hsy1 res.red.
The idea underlying this computation is that one can use the scale symmetries of

Burgers’equation to assign “gradings” to each variable appearing in the equation (in
other words, one can use dimensional analisys). As a consequence, one could try dif-
ferent ansatz for symmetries with polynomial generating functions. For example, it is
possible to require that they are sum of monomials of given degrees. This ansatz yields
a simplification of the equations for symmetries, because it is possible to solve them
in a “graded” way, i.e., it is possible to split them into several equations made by the
homogeneous components of the equation for symmetries with respect to gradings.
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In particular, Burgers’equation translates into the following dimensional equation:

[ut] = [uxx], [uxx] = [2uux].

By the rules [uz] = [u]− [z] and [uv] = [u] + [v], and choosing [x] = −1, we have [u] = 1
and [t] = −2. This will be used to generate the list of homogeneous monomials of given
grading to be used in the ansatz about the structure of the generating function of the
symmetries.
Setting up the jet space and the differential equation. The program that builds total
derivatives restricted to the given equation has to be loaded in the beginning:

in "cde.red";

Then, CDIFF needs to know the variables, their scale degree and the maximal order
of derivatives at which it will compute differential consequences of the given equation.
The input is done in this way:

indep_var:={x,t}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-1,-2}$

deg_dep_var:={1}$

deg_odd_var:={0}$

total_order:=10$

Here

• indep var is the list of independent variables;
• dep var is the list of dependent variables;
• odd var is the list of odd variables (not used in this computation – just a dummy
variable);

• deg indep var is the list of scale degrees of the independent variables;
• deg dep var is the list of scale degrees of the dependent variables;
• deg odd var is the list of scale degrees of odd variables (not used in this com-
putation);

• total order is the maximal order of derivatives at which the program will
compute differential consequences of the given equation;

Two more parameters can be set for convenience:

statename:="bur_hsy1_state.red"$

resname:="bur_hsy1_res.red"$

These are the name of the output file for recording the internal state of the program
cde.red, including the total derivatives, and the name of the file containing results of
the computation.
We now give the equation in the form of one of the derivatives equated to a right-

hand side expression. The left-hand side derivative is called principal, and the remain-
ing derivatives are called parametric1. Parametric coordinates are coordinates on the
equation manifold and its differential consequences, and principal coordinates can be
deduced from the differential equation and its differential consequences. For scalar evo-
lutionary equations with two independent variables parametric derivatives are of the

1This terminology dates back to Riquier, see [18]
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type (u, ux, uxx, . . .). Note that the system must be in passive orthonomic form; this
also means that there will be no nontrivial integrability conditions between parametric
derivatives. (Lines beginning with % are comments for REDUCE.)

% left-hand side of the differential equation

principal_der:={u_x0t1}$

% right-hand side of the differential equation

de:={u_x2t0+2*u_x0t0*u_x1t0}$

% same construction for odd coordinates

principal_odd:={p_x0t1}$

de_odd:={-p_x2t0+2*u_x0t0*p_x1t0}$

In this computation the odd equation will not have any role, but it must be present
even for purely even computations. In order to speed up computations one could set
de odd to be zero.
The main routine in cde.red is called as follows:

cde({indep_var,dep_var,odd_var,total_order},

{{principal_der,de},{principal_odd,de_odd}})$

The function cde defines total derivatives truncated at the order total order and
restricted on the (even and odd) equation; this means that total derivatives are tangent
to the equation manifold. Their coordinate expressions are of the form

(1) Dλ =
∂

∂xλ
+

∑

ui
σ

parametric

ui
σλ

∂

∂ui
σ

+
∑

pi
σ

parametric

pi
σλ

∂

∂pi
σ

,

where σ is a multiindex. It can happen that ui
σλ (or pi

σλ) is principal and must be
replaced with differential consequences of the equation. Such differential consequences
are called primary differential consequences, and are computed; in general they will
depend on other, possibly new, differential consequences, and so on. Such newly ap-
pearing differential consequences are called secondary differential consequences. If the
equation is in passive orthonomic form, the system of all differential consequences (up
to the maximal order total order) must be solvable in terms of parametric derivatives
only. The function cde automatically computes all necessary and sufficient differential
consequences which are needed to solve the system.
Note that when in total derivatives there is a coefficient of order higher than maximal

this is replaced by the string letop. If such a string appears during computations it
is likely that we went too close to the highest order variables that we defined in the
file. This could mean that we need to extend the operators and variable list, just by
increasing the number total order. Later on we will describe a useful test to check
the absence of letop from a computation.
The output generated by the function cde is not a result of the computation, but it

can be useful for debugging purposes or for storing intermediate computations to be
reused later. It can be saved by the function:

save_cde_state(statename)$

Defining and solving the problem. Higher symmetries of the given equation are functions
sym depending on parametric coordinates up to some jet space order. We assume that
they are graded polynomials of all parametric derivatives. In practice, we generate
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a linear combination of graded monomials with arbitrary coefficients, then we plug
it in the equation of the problem and find conditions on the coefficients that fulfill
the equation. To construct a good ansatz, it is required to make several attempts
with different gradings, possibly including independent variables, etc.. For this reason,
ansatz-constructing functions are especially verbose. In order to use such functions they
must be initialized with the following command:

cde_grading(deg_indep_var,deg_dep_var,deg_odd_var)$

We need one operator equ whose components will be the equation of higher symme-
tries and its consequences. Moreover, we need an operator c which will play the role of
a vector of constants, indexed by a counter ctel:

ctel:=0;

operator c,equ;

We prepare a list of variables ordered by scale degree:

graadlijst:=der_deg_ordering(0,all_parametric_der)$

The function der deg ordering is defined in cde.red. It produces the given list using
the list all parametric der of all parametric derivatives of the given equation up to
the order total order. The first two parameters can assume the values 0 or 1 and say
that we are considering even variables and that the variables are of parametric type.
Then, due to the fact that all parametric variables have positive scale degree then we

prepare the list ansatz of all graded monomials of scale degree from 0 to 5

graadmon:=for i:=1:5 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

ansatz:=for each el in graadmon join el$

More precisely, the command mkvarlist1(i,i) produces a list of monomials of degree
i from the list of graded variables graadlijst; the second command adds the zero-
degree monomial; and the last command produces a single list of all monomials.
Finally, we assume that the higher symmetry is a graded polynomial obtained from

the above monomials (so, it is independent of x and t!)

sym:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next, we define the equation ℓ̄B(sym) = 0, where B = 0 is Burgers’equation and sym is
the higher symmetry:

equ 1:=ddt(sym)-ddx(ddx(sym))-2*u_x0t0*ddx(sym)-2*u_x1t0*sym ;

In the above equation total derivatives with respect to x, t are ddx, ddt. The list of
variables, to be passed to the equation solver:

vars:=append(indep_var,all_parametric_der);

The number of initial equation(s):

tel:=1;

Next command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number of
equations);
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• the list of variables with respect to which the systemmust not split the equations,
i.e., variables with respect to which the unknowns are not polynomial. In this
case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes if
any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions. In
this example there are no free functions, but the command needs the presence
of at least a dummy argument, f in this case. There is also a last zero which is
the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

Run the procedure splitvars on the first component of equ in order to obtain equations
on coefficiens of each monomial.

splitvars 1;

Next command tells the solver the total number of equations obtained after running
splitvars.

pte tel;

This command solves the equations for the coefficients. Note that we have to skip the
initial equations!

for i:=2:te do es i;

;end;

One more example file is available; it concerns higher symmetries of the KdV equation.
In order to deal with symmetries explicitely depending on x and t it is possible to use
REDUCE and CDIFF commands in order to have sym = x*(something of degree 3) +
t*(something of degree 5) + (something of degree 2); this yields scale symmetries. Or we
could use sym = x*(something of degree 1) + t*(something of degree 3) + (something
of degree 0); thiw yields Galilean boosts.

5. Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut−uxxx+uux = 0. Concretely, we have to find non-trivial 1-forms f = fxdx+ftdt
on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation laws is a delicate
matter, for which we invite the reader to have a look in [12].
The files containing this example are kdv lcl1,kdv lcl2 and the corresponding re-

sults and debug files.
We suppose that the conservation law has the form ω = fxdx+ ftdt. Using the same

ansatz as in the previous example we assume

fx:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

ft:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next we define the equation d̄(ω) = 0, where d̄ is the total exterior derivative restricted
to the equation.

equ 1:=ddt(fx)-ddx(ft)$

After solving the equation as in the above example we get
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fx := c(3)*u_x1t0 + c(2)*u_x0t0 + c(1)$

ft := (2*c(8) + 2*c(3)*u_x0t0*u_x1t0 + 2*c(3)*u_x3t0 + c(2)*u_x0t0**2 +

2*c(2)*u_x2t0)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is just the KdV equation. Here this fact is evident; how to get rid of less
evident trivialities by an ‘automatic’ mechanism? We considered this problem in the
file kdv lcl2, where we solved the equation

equ 1:=fx-ddx(f0);

equ 2:=ft-ddt(f0);

after having loaded the values fx and ft found by the previous program. In order to
do that we have to introduce two new counters:

operator cc,equ;

cctel:=0;

We make the following ansatz on f0:

f0:=(for each el in ansatz sum (cc(cctel:=cctel+1)*el))$

After solving the system, issuing the commands

fxnontriv := fx-ddx(f0);

ftnontriv := ft-ddt(f0);

we obtain

fxnontriv := c(2)*u_x0t0 + c(1)$

ftnontriv := (2*c(8) + c(2)*u_x0t0**2 + 2*c(2)*u_x2t0)/2$

This mechanism can be easily generalized to situations in which the conservation laws
which are found by the program are difficult to treat by pen and paper. However, we
will present another approach to the computation of conservation laws in subsection 7.2.

6. Local Hamiltonian operators

In this section we will show how to compute local Hamiltonian operators for Korteweg–
de Vries, Boussinesq and Kadomtsev–Petviashvili equations. It is interesting to note
that we will adopt the same computational scheme for both equations, even if the latter
is not in evolutionary form and it has more than two independent variables. This comes
from a new mathematical theory which started in [13] for evolution equations and was
later extended to general differential equations in [14].

6.1. Korteweg–de Vries equation. Here we will find local Hamiltonian operators
for the KdV equation ut = uxxx+uux. Concretely, we have to solve ℓ̄KdV (phi) = 0 over
the equation

{

ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the ℓ∗-covering of the
KdV equation. The reference paper for this type of computations is [13].
The file containing this example is kdv lho1.
We stress that the linearization ℓ̄KdV (phi) = 0 is the equation

ddt(phi)-u_x0t0*ddx(phi)-u_x1t0*phi-ddx(ddx(ddx(phi)))=0
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but the total derivatives are lifted to the ℓ∗ covering, hence they must contain also
derivatives with respect to p’s. This will be achieved by treating p variables as odd and
introducing the odd parts of ddx and ddt.
At this point we should discuss how CDIFF treats odd variables. Externally they

look just like even variables, and are indicated by a letter followed by a multiindex.
Internally, they are components of an operator: ext(1), ext(2), ext(3), . . . , and
they are endowed with a skew-symmetric product. There are CDIFF commands which
translate expressions involving odd variables. Namely, to replace in the expression f

odd variables with ext variables (for example, for computations with CDIFF), do

replace_oddext(f);

and do

replace_extodd(g);

if you wish to translate a result g of CDIFF computations, depending on skew-symmetric
internal variables ext, in a more readable form in terms of odd variables.
The ansatz must be generalized to odd variables.

graadlijst:=der_deg_ordering(0,all_parametric_der)$

graadlijst_odd:=der_deg_ordering(1,all_parametric_odd)$

graadmon:=for i:=1:10 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

In particular, the unknown must be linear in odd variables, so we need a list of graded
monomials which are linear in odd variables. The function mkalllinodd produces all
monomials which are linear with respect to the variables from graadlijst odd, have
(monomial) coefficients from the variables in graadlijst, and have total scale degrees
from 1 to 6. Such monomials are then converted to the internal representation of odd
variables.

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,6)$

linext:=replace_oddext(linodd)$

Note that all odd variables have positive scale degrees thanks to our initial choice
deg odd var:=1;. Finally, the ansatz for local Hamiltonian operators:

sym:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After having set

equ 1:=ddt(sym)-u_x0t0*ddx(sym)-u_x1t0*sym-ddx(ddx(ddx(sym)));

and having initialized the equation solver as before, we do splitext

splitext 1;

in order to split the polynomial equation with respect to the ext variables, then
splitvars

tel1:=tel;

for i:=2:tel1 do begin splitvars i;equ i:=0;end;

in order to split the resulting polynomial equation in a list of equations on the coefficients
of all monomials.
Now we are ready to solve all equations:
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pte tel;

for i:=2:tel do es i;

end;

Note that we want all equations to be solved!
The results are the two well-known Hamiltonian operators for the KdV:

sym := (3*c(5)*ext(4) + 2*c(5)*ext(2)*u_x0t0 + c(5)*ext(1)*u_x1t0 +

3*c(2)*ext(2))/3$

sym_odd := (c(5)*p_x0t0*u_x1t0 + 2*c(5)*p_x1t0*u_x0t0 + 3*c(5)*p_x3t0 +

3*c(2)*p_x1t0)/3$

Note the internal and external expressions of the result. Of course, the results corre-
spond to the operators

ext(4) → Dx,

3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1 → 3Dxxx + 2uDx + ux

Note that each operator is multiplied by one arbitrary real constant, c(5) and c(2).

6.2. Boussinesq equation. There is no conceptual difference when computing for
systems of PDEs with respect to the previous computations for scalar equations. We
will look for Hamiltonian structures for the following Boussinesq equation:

(2)

{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

where σ is a constant. This example also shows how to deal with jet spaces with more
than one dependent variable. Here gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = [
∂

∂u
] = −2, [q] = [

∂

∂v
] = −1

where p, q are the two coordinates in the space of generating functions of conservation
laws.
The linearization of the above system and its adjoint are, respectively

ℓBou =

(

Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)

, ℓ∗Bou =

(

−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)

and lead to the ℓ∗Bou covering equation














−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find shadows of symmetries on the above covering. At the level of source
file (bou lho1 test) the input data is:

indep_var:={x,t}$

dep_var:={u,v}$

odd_var:={p,q}$

deg_indep_var:={-1,-2}$

deg_dep_var:={2,1}$

deg_odd_var:={1,2}$
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total_order:=8$

principal_der:={u_x0t1,v_x0t1}$

de:={u_x1t0*v_x0t0+u_x0t0*v_x1t0+sig*v_x3t0,u_x1t0+v_x0t0*v_x1t0}$

principal_odd:={p_x0t1,q_x0t1}$

de_odd:={v_x0t0*p_x1t0+q_x1t0,u_x0t0*p_x1t0+sig*p_x3t0+v_x0t0*q_x1t0}$

The ansatz for the components of the Hamiltonian operator, of scale degree between 1
and 6, is

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,6)$

linext:=replace_oddext(linodd)$

phi1:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

phi2:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

and the equation for shadows of symmetries is

equ 1:=ddt(phi1)-v_x0t0*ddx(phi1)-v_x1t0*phi1-u_x1t0*phi2-

u_x0t0*ddx(phi2)-sig*ddx(ddx(ddx(phi2)));

equ 2:=-ddx(phi1)-v_x0t0*ddx(phi2)-v_x1t0*phi2+ddt(phi2);

After the usual procedures for decomposing polynomials we obtain three local Hamil-
tonian operators:

phi1_odd := (2*c(27)*p_x0t0*sig*v_x3t0 + 2*c(27)*p_x0t0*u_x0t0*v_x1t0 +

2*c(27)*p_x0t0*u_x1t0*v_x0t0 + 6*c(27)*p_x1t0*sig*v_x2t0 +

4*c(27)*p_x1t0*u_x0t0*v_x0t0 + 6*c(27)*p_x2t0*sig*v_x1t0 +

4*c(27)*p_x3t0*sig*v_x0t0 + 2*c(27)*q_x0t0*u_x1t0 +

4*c(27)*q_x1t0*u_x0t0 + c(27)*q_x1t0*v_x0t0**2 + 4*c(27)*q_x3t0*sig +

2*c(13)*p_x0t0*u_x1t0 + 4*c(13)*p_x1t0*u_x0t0 + 4*c(13)*p_x3t0*sig +

2*c(13)*q_x1t0*v_x0t0 + 4*c(5)*q_x1t0*sig)/(4*sig)$

phi2_odd := (2*c(27)*p_x0t0*u_x1t0 + 2*c(27)*p_x0t0*v_x0t0*v_x1t0 +

4*c(27)*p_x1t0*u_x0t0 + c(27)*p_x1t0*v_x0t0**2 + 4*c(27)*p_x3t0*sig +

2*c(27)*q_x0t0*v_x1t0 + 4*c(27)*q_x1t0*v_x0t0 + 2*c(13)*p_x0t0*v_x1t0 +

2*c(13)*p_x1t0*v_x0t0 + 4*c(13)*q_x1t0 + 4*c(5)*p_x1t0*sig)/(4*sig)$

There is a whole hierarchy of nonlocal Hamiltonian operators [13].

6.3. Kadomtsev–Petviashvili equation. There is no conceptual difference in sym-
bolic computations of Hamiltonian operators for PDEs in 2 independent variables and
in more than 2 independent variables, regardless of the fact that the equation at hand
is written in evolutionary form. As a model example, we consider the KP equation

(3) uyy = utx − u2x − uuxx −
1

12
uxxxx.

Proceeding as in the above examples we input the following data:

indep_var:={t,x,y}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-3,-2,-1}$

deg_dep_var:={2}$

deg_odd_var:={1}$
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total_order:=6$

principal_der:={u_t0x0y2}$

de:={u_t1x1y0-u_t0x1y0**2-u_t0x0y0*u_t0x2y0-(1/12)*u_t0x4y0}$

principal_odd:={p_t0x0y2}$

de_odd:={p_t1x1y0-u_t0x0y0*p_t0x2y0-(1/12)*p_t0x4y0}$

and look for Hamiltonian operators of scale degree between 1 and 5:

linodd:=mkalllinodd(graadmon,graadlijst_odd,1,5)$

linext:=replace_oddext(linodd)$

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After solving the equation for shadows of symmetries in the cotangent covering

equ 1:=ddy(ddy(phi))-ddt(ddx(phi))+2*u_t0x1y0*ddx(phi)

+u_t0x2y0*phi+u_t0x0y0*ddx(ddx(phi))

+(1/12)*ddx(ddx(ddx(ddx(phi))))$

we get the only local Hamiltonian operator

phi_odd := c(10)*p_t0x2y0$

As far as we know there are no further local Hamiltonian operators.
Remark: the above Hamiltonian operator is already known in an evolutionary pre-

sentation of the KP equation [17]. Our mathematical theory of Hamiltonian operators
for general differential equations [14] allows us to formulate and solve the problem for
any presentation of the KP equation. Change of coordinate formulae could also be
provided.

7. Non-local Hamiltonian operators

In this section we will show an experimental way to find nonlocal Hamiltonian oper-
ators. The word ‘experimental’ comes from the lack of a comprehensive mathematical
theory of nonlocal Hamiltonian operators. In any case we will achieve the results by
means of a covering of the cotangent covering. Indeed, it can be proved that there is
a 1− 1 correspondence between (higher) symmetries of the initial equation and conser-
vation laws on the cotangent covering. Such conservation laws provide new potential
variables, hence a covering (see [12] for theoretical details on coverings).

In Section 7.2 we will also discuss a procedure for finding conservation laws from
their generating functions that is of independent interest.

7.1. Korteweg–de Vries equation. Here we will compute some nonlocal Hamiltonian
operators for the KdV equation. The result of the computation (without the details
below) has been published in [13].
We have to solve equations of the type ddx(ct)-ddt(cx) as in 5. The main difference

is that we will attempt a solution on the ℓ∗-covering (see Subsection 6). For this
reason, first of all we have to determine covering variables with the usual mechanism of
introducing them through conservation laws, this time on the ℓ∗-covering.
As a first step, let us compute conservation laws on the ℓ∗-covering whose components

are linear in the p’s. This computation can be found in the file kdv nlcl1 and related
results and debug files.
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The conservation laws that we are looking for are in 1− 1 correspondence with sym-
metries of the initial equation [13]. We will look for conservatoin laws which correspond
to Galilean boost, x-translation, t-translation at the same time. In the case of 2 inde-
pendent variables and 1 dependent variable, one could prove that one component of
such conservation laws can always be written as sym*p x0t0 as follows:

c1x_odd:=(t*u_x1t0+1)*p_x0t0$ % degree 1

c2x_odd:=u_x1t0*p_x0t0$ % degree 4

c3x_odd:=(u_x0t0*u_x1t0+u_x3t0)*p_x0t0$ % degree 6

Of course, we must pass to the internal representation:

c1x:=replace_oddext(c1x_odd)$

c2x:=replace_oddext(c2x_odd)$

c3x:=replace_oddext(c3x_odd)$

The second component must be found by solving an equation. To this aim we produce
the ansatz

c1t_odd:=f1*p_x0t0+f2*p_x1t0+f3*p_x2t0$

c1t:=replace_oddext(c1t_odd)$

c2t:=(for each el in linext6 sum (c(ctel:=ctel+1)*el))$ % degree 6

c3t:=(for each el in linext8 sum (c(ctel:=ctel+1)*el))$ % degree 8

where we already introduced the sets linext6 and linext8 of 6-th and 8-th degree
monomials which are linear in odd variables (see the source code). For the first conser-
vation law solutions of the equation

equ 1:=ddx(c1t)-ddt(c1x);

are found by hand due to the presence of ‘t’ in the symmetry:

f3:=t*u_x1t0+1$

f2:=-ddx(f3)$

f1:=u_x0t0*f3+ddx(ddx(f3))$

We also have the equations

equ 2:=ddx(c2t)-ddt(c2x);

equ 3:=ddx(c3t)-ddt(c3x);

They are solved in the usual way (see the source code of the example and the results
file kdv nlcl1 res).
Now, we solve the equation for shadows of nonlocal symmetries in a covering of the ℓ∗-

covering (source file kdv nlho1 test). We can produce such a covering by introducing
three new nonlocal (potential) variables ra,rb,rc. We are going to look for non-local
Hamiltonian operators depending linearly on one of these variables. To this aim we
modify the odd part of the equation to include the components of the above conservation
laws as the derivatives of the new non-local variables ra, rb, rc:

principal_odd:={p_x0t1,r1_x1t0,r1_x0t1,r2_x1t0,r2_x0t1,r3_x1t0,r3_x0t1}$

de_odd:={u_x0t0*p_x1t0+p_x3t0,

(t*u_x1t0+1)*p_x0t0,

p_x2t0*t*u_x1t0 + p_x2t0 - p_x1t0*t*u_x2t0

+ p_x0t0*t*u_x0t0*u_x1t0 + p_x0t0*t*u_x3t0 + p_x0t0*u_x0t0,

u_x1t0*p_x0t0,
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p_x2t0*u_x1t0 - p_x1t0*u_x2t0 + p_x0t0*u_x0t0*u_x1t0

+ p_x0t0*u_x3t0,

(u_x0t0*u_x1t0+u_x3t0)*p_x0t0,

p_x2t0*u_x0t0*u_x1t0 + p_x2t0*u_x3t0 - p_x1t0*u_x0t0*u_x2t0

- p_x1t0*u_x1t0**2 - p_x1t0*u_x4t0 + p_x0t0*u_x0t0**2*u_x1t0

+ 2*p_x0t0*u_x0t0*u_x3t0 + 3*p_x0t0*u_x1t0*u_x2t0 + p_x0t0*u_x5t0}$

The scale degree analysis of the local Hamiltonian operators of the KdV equation leads
to the formulation of the ansatz

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

where linext is the list of graded mononials which are linear in odd variables and
have degree 7 (see the source file). The equation for shadows of nonlocal symmetries
in ℓ∗-covering

equ 1:=ddt(phi)-u_x0t0*ddx(phi)-u_x1t0*phi-ddx(ddx(ddx(phi)));

is solved in the usual way, obtaining (in odd variables notation):

phi_odd := (c(1)*(4*p_x0t0*u_x0t0*u_x1t0 + 3*p_x0t0*u_x3t0 +

4*p_x1t0*u_x0t0**2 + 12*p_x1t0*u_x2t0 + 18*p_x2t0*u_x1t0 +

12*p_x3t0*u_x0t0 + 9*p_x5t0 - r2_x0t0*u_x1t0))/9$

Higher non-local Hamiltonian operators could also be found [13].

7.2. Plebanski equation. The Plebanski (or second Heavenly) equation

(4) F = uttuxx − u2tx + uxz + uty = 0

is Lagrangian, hence it admits a trivial local Hamiltonian operator which is just the
Noether map. Nonlocal Hamiltonian operators have been computed in an evolutionary
presentation of the equation in [19]. We can recompute such operators in the above
Lagrangian presentation by introducing a suitable nonlocal variable on the cotangent
covering. Namely, we compute a linear conservation law (with respect to p’s) on the
cotangent covering which corresponds with the u-translation symmetry (see [16] for a
theoretical description). After guessing the generating function of the conservation law
ψ = (0, 1) from the generating function ϕ = 1 of the u-translation symmetry , we
deduce that the equation

(5) d̄ω = ℓ∗F (p)

should hold on the jet space. Here

ω = ct dx ∧ dy ∧ dz + cx dt ∧ dy ∧ dz + cy dt ∧ dx ∧ dz + cz dt ∧ dx ∧ dy,

where ct, cx, cy, cz are linear functions of p’s and its derivatives, with coefficients in
u’s2, and

d̄ω = (Dtct−Dxcx+Dycy −Dzcz)dt ∧ dx ∧ dy ∧ dz,

where total derivatives are lifted on the jet space of even and odd coordinates.
Then, we try to find representatives of the above conservation law which have not

more than two non-vanishing components. In particular we will solve the equation

(6) Dtct−Dxcx = 0

2In general, coefficients can explicitly depend on independent variables.
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in the cotangent covering. Such an equation cannot be solved in general, but it can be
solved in this case. In order to solve it we perform dimensional analysis on (5) and we
deduce the gradings of ct and cx. The result is determined up to trivial conservation
laws, so that we have to remove them; at the end we remain with a single 2-component
conservation law.
This allows us to introduce a new nonlocal odd variable r on the cotangent covering

such that rx = ct, rt = cx. We obtain an Abelian covering of the cotangent covering:














rx = ct,

rt = cx,

ℓ∗F (p) = 0,
F = 0.

A nonlocal Hamiltonian operator will be a shadow of symmetry of the above system
with respect to the initial equation F = 0 with the property of being linear with
respect to all (p’s and r’s) odd variables. With the above nonlocal variable we find a
nonlocal Hamiltonian operator which, after changing coordinates to the evolutionary
presentation of [19], coincides with one of the nonlocal Hamiltonian operators presented
in that paper3.
Let us describe the computation in detail. We start with the conservation law (see

the file ple nlcl1.red):

indep_var:={t,x,y,z}$

dep_var:={u}$

odd_var:={p}$

deg_indep_var:={-1,-1,-4,-4}$

deg_dep_var:={1}$

deg_odd_var:={4}$

total_order:=6$

% left-hand side of the differential equation

principal_der:={u_t0x1y0z1}$

% right-hand side of the differential equation

de:={-u_t1x0y1z0+u_t1x1y0z0**2-u_t2x0y0z0*u_t0x2y0z0}$

% same constructions for odd coordinates

principal_odd:={p_t0x1y0z1}$

de_odd:={-p_t1x0y1z0+2*u_t1x1y0z0*p_t1x1y0z0-u_t0x2y0z0*p_t2x0y0z0-

u_t2x0y0z0*p_t0x2y0z0}$

Now we limit the computation to variables of jetspace order not greater than 4; this
is done through the function selectvars, which takes four arguments. The first can
be 0 for even variables or 1 for odd variables, the second argument is the specified
order, the third argument is the subset of dependent variables that we wish to select
(all dependent variables in our case) and the fourth is the set of derivative coordinates
from which we wish to extract the variables.

3We observe that in [19] also the trivial Hamiltonian operator is recovered in the evolutionary
presentation; of course it has an apparently nontrivial expression.
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v0_4:=for i:=0:4 join selectvars(0,i,dep_var,all_parametric_der)$

vo0_4:=for i:=0:4 join selectvars(1,i,odd_var,all_parametric_odd)$

We rearrange all variables by their scale degree, starting from variables of degree 1
(the degree is always chosen in such a way that grading of any even or odd derivative
coordinates is positive):

graadlijst:=der_deg_ordering(0,v0_4)$

graadlijst_odd:=der_deg_ordering(1,vo0_4)$

and we collect graded monomials of scale degree less than or equal 13:

graadmon:=for i:=1:13 collect mkvarlist1(i,i)$

graadmon:={1} . graadmon$

Then we have to make an ansatz for the conservation law: since the summands of
ellstarfp have degree 9 we assume [ct]=[cx]=8

deg_cx:=8$

deg_ct:=deg_cx$

It would also be [cy]=[cz]=5, but in this computation we assume cy = cz = 0. Note
that no simplification can be assumed like in the case of 2 independent variables: it is
not true, in general, that one component of such conservation laws can always be written
as sym*p x0t0. The ansatz is constructed through the function mklinodd, which takes
three arguments: the list of lists of graded monomials of degree 1, 2, . . . , the list of lists
of graded odd variables of degree 1, 2, . . . , and the final degree of their products:

linoddt:=mklinodd(graadmon,graadlijst_odd,deg_ct)$

linoddx:=linoddt$

linextt:=replace_oddext(linoddt)$

linextx:=linextt$

% Ansatz:

ct:=(for each el in linextt sum (c(ctel:=ctel+1)*el))$

cx:=(for each el in linextx sum (c(ctel:=ctel+1)*el))$

The equation for conservation laws can be checked for the presence of letop. If an
error is issued, the computation must be rerun with a higher value of total order:

ct_t:=ddt(ct)$

cx_x:=ddx(cx)$

check_letop({ct_t,cx_x})$

Note that in the folder containing all examples there is also a shell script, rrr.sh (works
only under bash, a GNU/Linux command interpreter) which can be used to run reduce
on a given CDIFF program. If the function check letop issues an error message then
the script reruns the computation with a new value of total order one unity higher
than the previous one.
Finally we define the equation

equ 1:=ct_t-cx_x$

The equation admits a lot of solutions, almost all of which are trivial conservation laws
(here they are expressed in odd variables):

ct_odd := c(32)*p_t0x0y0z0*u_t2x1y0z0 + c(32)*p_t0x1y0z0*u_t2x0y0z0 + c(30)*

p_t0x0y0z0*u_t1x2y0z0 + c(30)*p_t0x1y0z0*u_t1x1y0z0 + c(28)*p_t0x0y0z0*
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u_t0x3y0z0 + c(28)*p_t0x1y0z0*u_t0x2y0z0 + c(26)*p_t0x0y0z0*u_t0x0y0z0*

u_t1x1y0z0 + c(26)*p_t0x0y0z0*u_t0x1y0z0*u_t1x0y0z0 + c(26)*p_t0x1y0z0*

u_t0x0y0z0*u_t1x0y0z0 + c(24)*p_t0x0y0z0*u_t0x0y0z0*u_t0x2y0z0 + c(24)*

p_t0x0y0z0*u_t0x1y0z0**2 + c(24)*p_t0x1y0z0*u_t0x0y0z0*u_t0x1y0z0 + 3*c(22)*

p_t0x0y0z0*u_t0x0y0z0**2*u_t0x1y0z0 + c(22)*p_t0x1y0z0*u_t0x0y0z0**3 - c(20)*

p_t0x0y0z0*u_t1x2y0z0 + c(20)*p_t0x2y0z0*u_t1x0y0z0 + c(19)*p_t1x0y0z0*

u_t1x1y0z0 + c(19)*p_t1x1y0z0*u_t1x0y0z0 - c(17)*p_t0x0y0z0*u_t0x3y0z0 + c(17)*

p_t0x2y0z0*u_t0x1y0z0 + c(16)*p_t1x0y0z0*u_t0x2y0z0 + c(16)*p_t1x1y0z0*

u_t0x1y0z0 - 2*c(14)*p_t0x0y0z0*u_t0x0y0z0*u_t0x2y0z0 - 2*c(14)*p_t0x0y0z0*

u_t0x1y0z0**2 + c(14)*p_t0x2y0z0*u_t0x0y0z0**2 + 2*c(13)*p_t1x0y0z0*u_t0x0y0z0*

u_t0x1y0z0 + c(13)*p_t1x1y0z0*u_t0x0y0z0**2 + c(11)*p_t0x0y0z0*u_t0x3y0z0 + c(11

)*p_t0x3y0z0*u_t0x0y0z0 - c(10)*p_t1x0y0z0*u_t0x2y0z0 + c(10)*p_t1x2y0z0*

u_t0x0y0z0 + c(9)*p_t2x0y0z0*u_t0x1y0z0 + c(9)*p_t2x1y0z0*u_t0x0y0z0 + c(7)*

p_t0x4y0z0 + c(6)*p_t1x3y0z0 + c(5)*p_t2x2y0z0 + c(4)*p_t3x1y0z0 + c(1)*

p_t0x0y0z0*u_t1x2y0z0 + c(1)*p_t0x0y1z0 + c(1)*p_t1x0y0z0*u_t0x2y0z0$

cx_odd := c(32)*p_t0x0y0z0*u_t3x0y0z0 + c(32)*p_t1x0y0z0*u_t2x0y0z0 + c(30)*

p_t0x0y0z0*u_t2x1y0z0 + c(30)*p_t1x0y0z0*u_t1x1y0z0 + c(28)*p_t0x0y0z0*

u_t1x2y0z0 + c(28)*p_t1x0y0z0*u_t0x2y0z0 + c(26)*p_t0x0y0z0*u_t0x0y0z0*

u_t2x0y0z0 + c(26)*p_t0x0y0z0*u_t1x0y0z0**2 + c(26)*p_t1x0y0z0*u_t0x0y0z0*

u_t1x0y0z0 + c(24)*p_t0x0y0z0*u_t0x0y0z0*u_t1x1y0z0 + c(24)*p_t0x0y0z0*

u_t0x1y0z0*u_t1x0y0z0 + c(24)*p_t1x0y0z0*u_t0x0y0z0*u_t0x1y0z0 + 3*c(22)*

p_t0x0y0z0*u_t0x0y0z0**2*u_t1x0y0z0 + c(22)*p_t1x0y0z0*u_t0x0y0z0**3 - c(20)*

p_t0x0y0z0*u_t2x1y0z0 + c(20)*p_t0x1y0z0*u_t2x0y0z0 - c(20)*p_t1x0y0z0*

u_t1x1y0z0 + c(20)*p_t1x1y0z0*u_t1x0y0z0 + c(19)*p_t1x0y0z0*u_t2x0y0z0 + c(19)*

p_t2x0y0z0*u_t1x0y0z0 - c(17)*p_t0x0y0z0*u_t1x2y0z0 + c(17)*p_t0x1y0z0*

u_t1x1y0z0 - c(17)*p_t1x0y0z0*u_t0x2y0z0 + c(17)*p_t1x1y0z0*u_t0x1y0z0 + c(16)*

p_t1x0y0z0*u_t1x1y0z0 + c(16)*p_t2x0y0z0*u_t0x1y0z0 - 2*c(14)*p_t0x0y0z0*

u_t0x0y0z0*u_t1x1y0z0 - 2*c(14)*p_t0x0y0z0*u_t0x1y0z0*u_t1x0y0z0 + 2*c(14)*

p_t0x1y0z0*u_t0x0y0z0*u_t1x0y0z0 - 2*c(14)*p_t1x0y0z0*u_t0x0y0z0*u_t0x1y0z0 + c(

14)*p_t1x1y0z0*u_t0x0y0z0**2 + 2*c(13)*p_t1x0y0z0*u_t0x0y0z0*u_t1x0y0z0 + c(13)*

p_t2x0y0z0*u_t0x0y0z0**2 + c(11)*p_t0x0y0z0*u_t1x2y0z0 - c(11)*p_t0x1y0z0*

u_t1x1y0z0 + c(11)*p_t0x2y0z0*u_t1x0y0z0 + c(11)*p_t1x0y0z0*u_t0x2y0z0 - c(11)*

p_t1x1y0z0*u_t0x1y0z0 + c(11)*p_t1x2y0z0*u_t0x0y0z0 - c(10)*p_t1x0y0z0*

u_t1x1y0z0 + c(10)*p_t1x1y0z0*u_t1x0y0z0 - c(10)*p_t2x0y0z0*u_t0x1y0z0 + c(10)*

p_t2x1y0z0*u_t0x0y0z0 + c(9)*p_t2x0y0z0*u_t1x0y0z0 + c(9)*p_t3x0y0z0*u_t0x0y0z0

+ c(7)*p_t1x3y0z0 + c(6)*p_t2x2y0z0 + c(5)*p_t3x1y0z0 + c(4)*p_t4x0y0z0 + c(1)*

p_t0x0y0z0*u_t2x1y0z0 - c(1)*p_t0x0y0z1 - c(1)*p_t0x1y0z0*u_t2x0y0z0 + 2*c(1)*

p_t1x0y0z0*u_t1x1y0z0$

We begin the removal of trivial conservation laws from the above solution. The idea is
that a conservation law (i.e. a horizontal 3-form) is trivial if it is equal to the horizontal
differential of a 2-form. Such two form will be chosen according with dimensional anal-
ysis. We introduce an operator and a counter that will parametrize trivial conservation
laws:

operator cc$
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cctel:=0$

Then we assume that the trivial conservation law has the form

tcl = tctxdt ∧ dx+ tctydt ∧ dy + tctzdt ∧ dz + tcxydx ∧ dy + tcxzdx ∧ dz + tcyzdy ∧ dz

so that a conservation law will be trivial if and only if

d̄(tcl) =(Dz(tcxy)−Dy(tcxz) +Dx(tcyz))dx ∧ dy ∧ dz+

(Dz(tcty)−Dy(tctz) +Dt(tcyz))dt ∧ dy ∧ dz+

(Dz(tctx)−Dx(tctz) +Dt(tcxz))dt ∧ dx ∧ dz+

(Dy(tctx)−Dx(tcty) +Dt(tcxy))dt ∧ dx ∧ dy

=ctdx ∧ dy ∧ dz + cxdt ∧ dy ∧ dz + cydt ∧ dx ∧ dz + czdt ∧ dx ∧ dy

Since in our case we are looking for a 2-component conservation law, we will assume a
single potential of the form: tcyzdy ∧ dz:

deg_tcyz:=7$

linodd_tcyz:=mklinodd(graadmon,graadlijst_odd,deg_tcyz)$

linext_tcyz:=replace_oddext(linodd_tcyz)$

tcyz:=(for each el in linext_tcyz sum (cc(cctel:=cctel+1)*el))$

After clearing the previous equations, we set up the new equation

clear equ$

operator equ$

equ 1:=ddx(tcyz) - ct$

equ 2:=ddt(tcyz) - cx$

Note that in this case if the equation can be solved then the conservation law is trivial;
only if the equation cannot be solved we found at least one nontrivial conservation law.
Results can be written as follows:

write ctnontriv:=equ 1$

write cxnontriv:=equ 2$

they will be nonzero if a nontrivial conservation law remains in ct and cx.
Now, we look for nonlocal Hamiltonian operators in the cotangent covering using a

new nonlocal odd variable r as follows (see ple nlho1.red):

indep_var:={t,x,y,z}$

dep_var:={u}$

odd_var:={p,r}$

deg_indep_var:={-1,-1,-4,-4}$

deg_dep_var:={1}$

deg_odd_var:={1,4}$

total_order:=6$

principal_der:={u_t0x1y0z1}$

de:={-u_t1x0y1z0+u_t1x1y0z0**2-u_t2x0y0z0*u_t0x2y0z0}$

% rhs of the equations that define the nonlocal variable

r_t:=p_t0x0y0z1 + p_t0x1y0z0*u_t2x0y0z0 + p_t2x0y0z0*u_t0x1y0z0$

r_x:=- p_t0x0y1z0 + p_t0x1y0z0*u_t1x1y0z0 + p_t1x1y0z0*u_t0x1y0z0$
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% We add conservation laws as new nonlocal odd variables;

principal_odd:={

p_t0x1y0z1,

r_t0x1y0z0,r_t1x0y0z0

}$

%

de_odd:={-p_t1x0y1z0+2*u_t1x1y0z0*p_t1x1y0z0-u_t0x2y0z0*p_t2x0y0z0-

u_t2x0y0z0*p_t0x2y0z0,

r_x,r_t

}$

We look for Hamiltonian operators which depend on r (which has scale degree 4); we
produce the following ansatz for phi:

linodd:=mkalllinodd_e(graadmon,graadlijst_odd,1,4)$

linext:=replace_oddext_e(linodd)$

phi:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

then we solve the equation of shadows of symmetries:

equ 1:=ddx(ddz(phi))+ddt(ddy(phi))-2*u_t1x1y0z0*ddt(ddx(phi))

+u_t0x2y0z0*ddt(ddt(phi))+u_t2x0y0z0*ddx(ddx(phi))$

The solution in odd coordinates is

phi_odd := - c(13)*p_t1x0y0z0*u_t0x1y0z0 + c(13)*r_t0x0y0z0

+ c(1)*p_t0x0y0z0$

hence we obtain the Noether map (the identity operator p) and the new nonlocal opera-
tor r−uxpt. It can be proved that changing coordinates to the evolutionary presentation
yields the local operator (which has a much more complex expression than the identity
operator) and one of the nonlocal operators of [19].
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