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An outline

On the problem of constructing 1-parameter families of
zero-curvature representations (ZCRs)

Preliminaries

Main results and some examples
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

A typical property

A typical property of integrable PDEs is that of admitting ZCRs.

Particularly important are parameter dependent ZCRs αλ

( λ is a spectral parameter).

The presence of a parameter is crucial from several point of view:
- search of exact solutions;
- existence of parametric Bäcklund transformations;
- existence of hierarchies of conservation laws.
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Nontriviality of a parameter

A cohomological obstruction to triviality:

Michal Marvan, On the horizontal gauge cohomology and
non-removability of the spectral parameter, Acta Appl. Math. 72
(2002) 51-65

Using horizontal gauge cohomology:

- we know when a parameter is trivial;
- we know how to remove a parameter.
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Embedding α in a parameter dependent family αλ

Often we only know a nonparametric ZCR α .

Can we insert a nontrivial parameter?

Many attempts using classical symmetries:

Lund-Regge (1976);
Sasaki (1979);
Levi-Sym-Tu (1990);
Cieslinski-Goldstein-Sym (1994).

A cohomology-based method:

Marvan (2010)
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

About the symmetry-method

Main problem with symmetry-method:
Often one obtains a trivial 1-parameter family of ZCRs αλ .
How to recognize “good” symmetries? (if any)

An unproved conjecture (Cieslinski-Goldstein-Sym 1994):
"Good" symmetries can be identified by a mismatch of the
symmetry algebras of E and that of the covering defined by the
ZCR.
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Cohomology-based infinitesimal criterion

We found an infinitesimal criterion which allows one to solve the
problem of identifying “good” symmetries, if any.

Relatively to a given ZCR α :

We are able to distinguish between “good“ and “bad” symmetries.

In particular we found that “bad” symmetries form a sub-algebra of
the Lie algebra of classical symmetries, which is invariantly
associated to any ZCR α .
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Notations

{F(x,uσ ) = 0, |σ | ≤ k}=: E ⊂ Jk(π) π : E → M
(x,u) 7→ (x)

M ← ...← Jk(π)← ...← J l (π)← ...← J∞(π) π∞,k : J∞(π)→ Jk(π),

π∞ : J∞(π)→M

E ← E (1)← E (2)← ...← E (∞) ⊂ J∞(π)

E (∞) = {Dτ (F) = 0 : |τ| ≥ 0}

E formally integrable

...← C k(E )← C k+1(E (1))← ...← C (E )

Λ∗(E ) forms over E (∞)
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Bicomplex structure of Λ∗(E )

T (E ) = V (E )⊕C (E ) π̄∞ := π∞|E (∞) : E (∞)→M

Λ1(E ) = Λ(1,0)(E )⊕Λ(0,1)(E )

Λ(1,0)(E ) := Ann (V (E )) (loc. gen. by {dx i})

Λ(0,1)(E ) := Ann (C (E )) (loc. gen. by
{

θ̄
j
σ := θ j

∣∣
E (∞)

}
)

Λ(p,0)(E ) (p-horizontal)

Λ(0,q)(E ) (q-vertical)

Λr (E ) =
⊕

p+q=r Λ(p,q) (E )
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Bicomplex structure of Λ∗(E )

d̄ := d |E (∞) = d̄H + d̄V , d̄2
H=d̄2

V=0 , d̄H ◦ d̄V =−d̄V ◦ d̄H

...−→ Λ(p,q)(E )
d̄H−→ Λ(p+1,q)(E )−→ ... (horizontal complex)

...−→ Λ(p,q)(E )
d̄V−→ Λ(p,q+1)(E )−→ ... (vertical complex)

The action on Λ∗ (E ) is completely determined by

d̄H (ω1∧ω2) = d̄H (ω1)∧ω2 + (−1)ω1ω1∧ d̄H (ω2),

d̄V (ω1∧ω2) = d̄V (ω1)∧ω2 + (−1)ω1ω1∧ d̄V (ω2) .

and by the action on functions

d̄H f := D̄i (f )dx i , d̄V f :=
∂ f

∂ujσ
θ̄
j
σ

with D̄i denoting the total derivatives restricted to E (∞).
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

g-valued horizontal forms

Λ̄q (E ) := Λ(q,0) (E )

g Lie algebra of a matrix Lie group G, g⊂ gl(n,R) or g⊂ gl(n,C)

g⊗ Λ̄∗ (E ) =
⊕

q g⊗ Λ̄q (E ) ( g-valued horizontal forms)

[A1ω1,A2ω2] := [A1,A2]ω1∧ω2,

[ , ] can be extended by linearity to g⊗ Λ̄∗ (E )


[ρ,σ ] =−(−1)rs [σ ,ρ]

(−1)rt [ρ, [σ ,τ]] + (−1)sr [σ , [τ,ρ]] + (−1)ts [τ, [ρ,σ ]] = 0

d̄H [ρ,σ ] = [d̄Hρ,σ ] + (−1)r [ρ, d̄Hσ ]

ρ ∈ g⊗ Λ̄r (E ) , σ ∈ g⊗ Λ̄s (E ) , τ ∈ g⊗ Λ̄t (E )
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

ZCRs

Definition (ZCRs)
A g-valued zero curvature representation (ZCR) for an equation E is a 1-form
α ∈ g⊗ Λ̄1 (E ) such that

d̄Hα =
1
2

[α,α] .
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Gauge transformations and removable parameters
Any G -valued smooth function S on E (∞), defines a gauge transformation:

α (ZCR) 7→ α
S := d̄HS ·S−1 +S ·α ·S−1 (ZCR)

α  αλ := αMλ , λ ∈ ]a,b[  (αλ )M
−1
λ =

(
αMλ

)M−1
λ = α(

αS1
)S2 = αS2S1 ⇒ (αλ )(Mλ0M

−1
λ

) =

(
α
M−1

λ

λ

)Mλ0
= α

Mλ0 = αλ0 ,

Definition (removable parameters)
Let αλ be a 1-parameter family of g-valued ZCRs of E , with λ ∈ ]a,b[⊂ R.[

λ is removable

from αλ

]
⇐⇒


∀λ0 ∈ ]a,b[ exists a G -valued smooth

function Sλ such that Sλ0=I (identity) and

αλ0 = α
S−1

λ

λ
.

 .

If λ is not removable, then αλ is called nontrivial.
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

Marvan’s gauge complex of a g-valued ZCR

Let α be a ZCR of E

d̄Hα =
1
2

[α,α] . (1)

Marvan’s horizontal gauge complex of a ZCR α:

0→ g⊗ Λ̄0 (E )
∂̄α−→ g⊗ Λ̄1 (E )

∂̄α−→ g⊗ Λ̄2 (E )−→ ...−→ g⊗ Λ̄n (E )−→ 0

∂̄α := d̄H −adα : g⊗ Λ̄p (E ) −→ g⊗ Λ̄p+1 (E )
ω 7→ d̄Hω− [α,ω]

In view of (1) one has:
∂̄

2
α = 0.
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Constructing nontrivial 1-parameter families of ZCRs
Preliminaries

The obstruction to the removability of a parameter

Theorem. (Marvan 2002)

If αλ is a 1-parameter family of g-valued ZCRs for E , with λ ∈]a,b[, then:

1 α̇λ := d
dλ

αλ is a 1-cocycle with respect to ∂̄αλ
, i.e., ∂̄αλ

(α̇λ ) = 0;

2 the parameter λ is removable if, and only if, there exists a solution
K ∈ g⊗ Λ̄0(E ) of the equation

α̇λ = ∂̄αλ
(K) . (2)

For any solution K of (2) and λ0 ∈]a,b[, the G -valued matrix Sλ such that

αλ0 = α
S−1

λ

λ
is the solution of the Cauchy problem{

Ṡλ = K Sλ ,
Sλ0 = I.

The first gauge cohomology group H̄1
α (E ,g) is the obstruction to removability

of a parameter from a ZCR.
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Action of symmetries on ZCRs

F : J(∞)(π)→ J(∞)(π) F = A(∞) (contact transf.)

g⊗Λ(a+1,b)(π)
π(a+1,b)◦F ∗−→ g⊗Λ(a+1,b)(π)

dH ↑ 	 ↑ dH
g⊗Λ(a,b)(π) −→

π(a,b)◦F ∗
g⊗Λ(a,b)(π)

Using (a,b)-projections: π(a,b) : g⊗Λ∗ (π)→ g⊗Λ(a,b) (π)

E ,Y ⊂ Jk(π) (form. int.), A(E ) = Y , F̄ := F |E (∞)

g⊗Λ(a+1,b)(Y )
π̄

(a+1,b)
E ◦F̄ ∗
−→ g⊗Λ(a+1,b)(E )

d̄H,Y ↑ 	 ↑ d̄H,E

g⊗Λ(a,b)(Y ) −→
π̄

(a,b)
E ◦F̄ ∗

g⊗Λ(a,b)(E )

Using (a,b)-projections: π̄
(a,b)
E : g⊗Λ∗ (E )→ g⊗Λ(a,b) (E )
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Action of symmetries on ZCRs

Proposition.
If F is the infinite prolongation of a point or contact transformation,
which maps a formally integrable equation E ⊂ Jk(π) to a formally
integrable equation Y ⊂ Jk(π), then

F̄# := π̄
(1,0)
E ◦ F̄ ∗ : g⊗ Λ̄1(Y ) → g⊗ Λ̄1(E )

β 7→ α = F̄#(β )

maps ZCRs of Y to ZCRs of E .
In particular, if F̄ is the restriction to E (∞) of a classical symmetry of a
formally integrable equation E , then F̄ ] maps any ZCR α of E to a ZCR
F̄#(α).
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Projected Lie derivatives

Let Z ∈D (J∞(π)) and ω ∈ g⊗Λ(p,q)(π):

Z (ω) := π
(p,q) (LZ (ω)) (π(p,q) -projected Lie derivative).

If Z is a generalized symmetry of E and ω ∈ g⊗Λ(p,q)(E ):

Z̄ (ω) := π̄
(p,q) (LZ̄ (ω)) (π(p,q) -projected Lie derivative),

with Z̄ := Z |E (∞) .
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Commutation formula for Z̄ and d̄H

If Z is a generalized symmetry of E , for any ω ∈ g⊗Λ(p,q)(E ) one
has:

Z̄ (d̄H(ω)) = d̄H(Z̄ (ω)).

Then for a ZCR α

d̄Hα− 1
2

[α,α] = 0,

one gets

0 = Z̄
(
d̄Hα− 1

2 [α,α]
)

= d̄H
(
Z̄ (α)

)
− 1

2 [Z̄ (α),α]− 1
2 [α, Z̄ (α)] =

d̄H
(
Z̄ (α)

)
− [α, Z̄ (α)] = ∂̄α Z̄ (α).
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Z̄ (α) is closed w.r.t. ∂̄α

Proposition.

Z̄ (α) is a 1-cocycle with respect to ∂̄α , i.e.,

∂̄α Z̄ (α) = 0, (3)

for any (generalized) symmetry Z of E and any ZCR α ∈ g⊗ Λ̄1(E ).
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Construction of 1-parameter family of ZCRs αλ

For a classical symmetry Z of E , with associated flow {Aλ}:

αλ := A#
λ

(α) (1 -parameter family of ZCRs).
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Infinitesimal obstruction to removability

Theorem (infinitesimal obstruction to removability)

The parameter λ in αλ = A#
λ

(α) is removable if, and only if, Z̄ (α)

is a coboundary with respect to ∂̄α , i.e.,

Z̄ (α) = ∂̄αK ,

for some g-valued smooth function K on E (∞).

Definition (gauge-like symmetries)

Z is a generalized (or classical) gauge-like symmetry for the ZCR
α ∈ g⊗ Λ̄1(E ) iff

Z̄ (α) = ∂̄αK ,

for some g-valued smooth function K on E (∞).
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Gauge-like symmetries form a Lie algebra

Proposition (algebra of gauge-like symmetries)

If Z1 and Z2 are gauge-like for α with

Z̄1(α) = ∂̄αK1, Z̄2(α) = ∂̄αK2, (4)

then
[Z1,Z2](α) = ∂̄α (K12)

with
K12 = Z̄1(K2)− Z̄2(K1)− [K1,K2] .

Therefore, gauge-like symmetries of a ZCR α form a Lie
sub-algebra of the Lie algebra of generalized symmetries of E .

Modulo contact transformations, such an algebra is invariantly
associated to the ZCR α .
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

KDV: ut = uxxx +6uux

Classical symmetries are generated by “prolongations” of

Y1 = ∂x , Y2 = t∂x +
1
6

∂u , Y3 = ∂t , Y4 = 3t∂t +x∂x −2u∂u

A ZCR is

α=
(

0 u−1
−1 0

)
dx+

(
ux uxx +2u+2u2−4

−4−2u −ux

)
dt.

The prolonged flow of Y4, up to order 2, is such that

(t, x , u ,ux ,uxx ) 7→
(
e3λ t, eλ x , e−2λu, e−3λux , e

−4λuxx
)

αλ =

(
0 −eλ + e−λu

−eλ 0

)
dx+

(
ux e−λuxx +2eλu+2e−λu2−4e3λ

−4e3λ −2eλu −ux

)
dt.
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Chen-Lee-Liu system:

{
ut +uxx −2uvux = 0
vt + vxx −2uvvx = 0

Classical symmetries are generated by “prolongations” of

Y1 = ∂x , Y2 = ∂t , Y3 =−u∂u + v∂v , Y4 = x∂x +2t∂t −v∂v .

α :=

( 1
2uv −

1
2 u

v − 1
2uv + 1

2

)
dx+(

2
( 1

2uv −
1
2

)2
+ 1

2uxv −
1
2uvx u2v −u+ux

uv2−v −vx −2
( 1

2uv −
1
2

)2− 1
2uxv + 1

2uvx

)
dt

The prolonged flow of Y4 , up to order 1, is such that

(t, x , u ,v ,ux ,vx ) 7→
(
e2λ t, eλ x , u, e−λ v e−λux , e

−2λ vx
)
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Chen-Lee-Liu system:

One has that

αλ =

( 1
2uv −

1
2e

λ eλu

v − 1
2uv + 1

2e
λ

)
dx+(

1
2

(
uv − eλ

)2
+ 1

2 (uxv −uvx ) eλu2v − e2λu+ eλux

uv2− eλ v −vx − 1
2

(
uv − eλ

)2− 1
2 (uxv −uvx )

)
dt.
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

Burgers: ut = uxx +uux

The algebra of classical symmetries is generated by

Y1 = ∂x , Y2 = ∂t , Y3 = x∂x +2t∂t −u∂u ,

Y4 = t∂x −∂u , Y5 =−xt∂x − t2∂t + (x + tu)∂u .

Consider for instance the following two ZCRs:

α =

(
0 0

u 0

)
dx +

(
0 0

ux +u2 0

)
dt,

β =

( u
4 0

− 1
2 − u

4

)
dx +

 ux
4 + u2

8 0

− u
4 − ux

4 −
u2

8

dt.

With respect to α, the algebra of classical symmetries is gauge-like. Whereas
for β only Y1, Y2 and Y3 are gauge-like.
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Action of symmetries on ZCRs
Infinitesimal obstruction to removability

An example with a non-projectable symmetry:
For uxt = sinu, the field X = x∂x − t∂t generates a projectable symmetry which is non
gauge-like w.r.t.

α :=

(
1 − ux

2
ux
2 −1

)
dx +

1
4

(
cos (u) sin (u)

sin (u) −cos (u)

)
dt.

Under the point transformation

τ = t−u, ξ = x , v = u,

the equation, the ZCR and the symmetry transform to

vξ τ =
1

vτ −1
(
vξ vττ +v3τ sin (v)−3v2τ sin (v) +3vτ sin (v)− sin (v)

)
,

β =

 1− vξ cos(v)

4
vξ

2(vτ−1) −
vξ sin(v)

4

vξ

2(1−vτ ) −
vξ sin(v)

4
vξ cos(v)

4 −1

dξ +
1−vτ

4

(
cos (v) sin (v)

sin (v) −cos (v)

)
dτ,

Y = ξ ∂ξ + (v − τ)∂τ (non-projectable and non gauge-like w.r.t. β).

Diego Catalano Ferraioli (UFBA) ZCRs and PSS equations



Action of symmetries on ZCRs
Infinitesimal obstruction to removability
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