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Problem

Let R™ be real space with coordinates x := (x1,...,zy),
JIR™ be 1-jet space of smooth functions f: R* — R

with canonic coordinates (x,y,y’), where y’ = (y1,...,y,) and

of

oxy,

x([fla) =2, y((fla) = f(@), w(lfla) =5 -(a)

Abel partial differential equation of degree d is a differential
equation, which is polynomial in derivatives y:

> A (xy)-ut .y =0,
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Point pseudogroup is pseudogroup G := Diff (J°R") of
diffeomorphisms of space J'R™ ~ R"™*! |t acts on Abel differential

equations:
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Problem

Point pseudogroup is pseudogroup G := Diff (J°R") of
diffeomorphisms of space J'R™ ~ R"™*! |t acts on Abel differential
equations:

Yy—l-Yx-y’

x—>X=X(x7y), y—Y=Y(xy), y—Y=_t_*7
xy), y (%), vy X, T Xn .y

Problem

Classify Abel partial differential equations with respect to the
action of point pseudogroup.
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Why is this problem complicated? The action of point
pseudogroup on the fiber RP™ of the canonic projection
m10: JIR™® — JOR™ is projective

= it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3,

whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection 7y o: J'R™ — JR" by some
bundle with the base JOR™ and fiber R™t!, with the linear (not
projective) action of the point pseudogroup on the fibers.

So, we just “homogenize’ the fiber RP™ and obtain the fiber R?+1,
whose projectivization is RP".
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Further we will assume that n = 1; all constructions and theorems
can be easily generated on arbitrary n.
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differential 1-form s := dy — y1 dz, i.e.
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Symplectization of contact space J'R

Further we will assume that n = 1; all constructions and theorems
can be easily generated on arbitrary n.

Cartan distribution C: 6 — Cy on J'R is defined by Cartan
differential 1-form s := dy — y1 dz, i.e.

Cy = ker 3¢y, where 0 € J'R.

= contact structure on J'R.
Linear 1-form ay € Ty (J'R) is said to be contact, if ker g = Cy.
It is clear that ag = X - 2z, where X € R*.

Definition

Symplectization Symp(J'R) of contact space J'R is the set of all
contact I-forms ay.

Natural bundle 7: Symp(J'R) — J'R with fiber R* and
coordinate \.
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The following diffeomorphism holds:

Symp(J'R) ~ T*(JOR) \ {s0},

where s is the image of zero section of cotangent bundle T*(J'R).
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Symplectic structure

The following diffeomorphism holds:

Symp(J'R) ~ T*(JOR) \ {s0},

where s is the image of zero section of cotangent bundle T*(J'R).

We construct diffeomorphism 7% (JR) \ {so}=Symp(J'R).
Let B, € T*(J°R) = Lq = ker B, C Tu(JOR)
= (a,Ly) =10 € J'R = ap := 77 o(Ba)-

(07/] |C9: /Ba |La: 0

= «y is contact. O
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Symplectic coordinates

Put
q:=(z,y) and p:=(=Ayy,A).
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Symplectic coordinates

Put
q:=(z,y) and p:=(=Ayy,A).

Then
w:=A-7"(%) =pdq

is canonic 1-form
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Symplectic coordinates

Put
Then

is canonic 1-form

and
Q:=dw=dpAdq

is symplectic structure on symplectization Symp(.J'R).
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Symplectization of point transformations and PDE's

Point transformation ¢: J'R — J'R acts on contact forms oy =
¢ prolongs to symplectomorphism of cotangent bundle

7% T*(J'R) — J'R: q— Q(q), p— Q;'p (here Q. is
Jackobi matrix of diffeomorphism Q: J°R — J°R).

Abel PDE Ag(z,y) -y + A1 (z,y) - y& L + ... + Ag(z,y) =0
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Symplectization of point transformations and PDE's

Point transformation ¢: J'R — J'R acts on contact forms oy =
¢ prolongs to symplectomorphism of cotangent bundle

7% T*(J'R) — J'R: q— Q(q), p— Q;'p (here Q. is
Jackobi matrix of diffeomorphism Q: J°R — J°R).

Abel PDE Ag(z,y) - y¢ + Ar(z,y) -y + ...+ Ag(z,y) = 0 ~
Ao(q) - pf — Av(q) - pFipa + ..+ (—1)%44(q) - pE =0

— smooth function on T*(J°R), which is homogeneous in fiber
coordinates p = (p1,p2).
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Symplectization of point transformations and PDE's

Point transformation ¢: J'R — J'R acts on contact forms oy =
¢ prolongs to symplectomorphism of cotangent bundle

7% T*(J'R) — J'R: q— Q(q), p— Q;'p (here Q. is
Jackobi matrix of diffeomorphism Q: J°R — J°R).

Abel PDE Ag(z,y) - y¢ + Ar(z,y) -y + ...+ Ag(z,y) = 0 ~
Ao(q) - pf — Av(q) - pFipa + ..+ (—1)%44(q) - pE =0

— smooth function on T*(J°R), which is homogeneous in fiber
coordinates p = (p1,p2).

Problem

Classify smooth functions on T*(J°R), which are homogeneous in
fiber coordinates p, with respect to the action of

symplectomorphisms q — Q(q), p— Q;'p.
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Euler equation, algebra

Function F' = F(q, p) is homogeneous with respect to p <
p-fp,=d-F,

i.e. Fis solution of the Euler equation.

Let us consider function F' as function only on p = (p1,p2)

= linear action of group GL2(R) on the solutions of the Euler
equation

= the same problem as in case of binary forms!
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Differential invariants

Let F € C°(T*(J'R)).

Let J* be k-jet space of such functions with canonic coordinates
(9, P u, U ).

Point pseudogroup G acts on J*.

o Differential invariant of group G is rational function
J € C°°(J*°) such that go J = J for all g € G.

@ Invariant derivative is derivative V of algebra C'*°(J*°) such
that [V,£] =0 for all £ € g.
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Some differential invariants

@ Differential forms

Up1 dpl + upg dp2
u

w = pdq = p1dq: + p2dqz  and 1 :=

are G-invariant.

V.
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Some differential invariants

@ Differential forms

Up, dp1 + Up,dp2
U

w:= pdq = p1dq1 + p2dqz and ) :=
are G-invariant.

2
Uy py U —u U d U d
Q@ Put H = 22202 PP gpdy .= 22— Pl —
U u dpp u  dps

V.
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Some differential invariants

@ Differential forms

Up, dP1 + Up, dPo
w:= pdq = pidqy + padqe  and o = 22 P2

are G-invariant.

2
O Put H :— Upip1 Upaps = Uppy and ¥ i— Ups d Upy d

- u? uw dpr u  dpy
en
(VH)? d d v
J = =pp - S and 6= ——
mo TP g TR g, VH

are G-invariant.
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Invariant coordinate system

Consider invariants J; := J, Jo := 6J, J3 := 62J, Jy := 6°.J. We
assume, that they are independent = they define «coordinate
system>.
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Invariant coordinate system

Consider invariants J; := J, Jo := 6J, J3 := 62J, Jy := 6°.J. We
assume, that they are independent = they define «coordinate
system>». Let us rewrite vector field &, canonic 1-form w and
invariant 1-form ) in this coordinate system:
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Invariant coordinate system

Consider invariants J; := J, Jo := 6J, J3 := 62J, Jy := 6°.J. We
assume, that they are independent = they define «coordinate
system>». Let us rewrite vector field &, canonic 1-form w and
invariant 1-form ) in this coordinate system:

o= f:(s(Jz)DJ )
i=1 ¢
4

v ;“‘J(DZ?J)AJ“
T

¥ = Zw(DJ) Ji-
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Classification theorem

Let us consider functions Z: T*(J'R) — R, 2,
Z: T*(J'R) — R?,
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Classification theorem

Let us consider functions Z: T*(J'R) — R, 2,
X: T*(J'R) — R*, where 2 := (Q;), Z:= (R;),i=1, ..., 4,
and
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Classification theorem

Let us consider functions Z: T*(J'R) — R, 2,
X: T*(J'R) — R*, where 2 := (Q;), Z:= (R;),i=1, ..., 4,
and

D
4T = P(Jh,..., ), w<

DJ‘) = Qi(J1, ..., Ju),

w(Dl?]i) = Ry(s s ).
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Classification theorem

Let us consider functions Z: T*(J'R) — R, 2,
X: T*(J'R) — R*, where 2 := (Q;), Z:= (R;),i=1, ..., 4,
and

D
4T = P(Jh,..., ), w<

DJ‘) = Qi(J1, ..., Ju),

Two Abg/ PDE's, which correspond to the homogeneous functions
F and F are point—equivalent, iff

(P, 2,%)=(P,2,%).
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Proof

=" — obvious.

=

Pavel Bibikov Teplice nad Becvou—2013



Proof
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for two homogeneous functions F and F.
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"=" — obvious.

<" Let L
(P, 2,%)= (P, 2,%)

for two homogeneous functions F and F.

Consider “invariant coordinate systems”

S := (J1(F), Jo(F), J3(F), Ja(F)), 8 := (Ju(F), Ja(F), J3(F), Ja(F)).
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for two homogeneous functions F and F.

Consider “invariant coordinate systems”
S = (J1(F), ]o(F), J3(F), Ju(F)), 8 := (Ji(F), Ja(F), J3(F), Ja(F)).

Let
®: T*(J'R) — T*(J°R), &(5)=2S.
Then

o ® € G, because ® preserves J'R () and w (2);
@ $oF = - F, because @ preserves ¢ (Z).
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"=" — obvious.

<" Let L
(P, 2,%)= (P, 2,%)
for two homogeneous functions F and F.

Consider “invariant coordinate systems”
S = (J1(F), ]o(F), J3(F), Ju(F)), 8 := (Ji(F), Ja(F), J3(F), Ja(F)).

Let

®: T*(J'R) — T*(J°R), &(5)=2S.
Then
o ® € G, because ® preserves J'R () and w (2);
@ $oF = - F, because @ preserves ¢ (Z).

Hence, F' and F' are point—equivalent.



