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Problem

Let Rn be real space with coordinates x := (x1, . . . , xn),

J1Rn be 1-jet space of smooth functions f : Rn → R

with canonic coordinates (x, y,y′), where y′ = (y1, . . . , yn) and

x([f ]1a) = a, y([f ]1a) = f(a), yk([f ]1a) =
∂f

∂xk
(a).

Abel partial differential equation of degree d is a differential
equation, which is polynomial in derivatives yk:∑

i1+...+in6d

Ai1...in(x, y) · yi1
1 . . . yin

n = 0.
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Problem

Point pseudogroup is pseudogroup G := Diff(J0Rn) of
diffeomorphisms of space J0Rn ' Rn+1. It acts on Abel differential
equations:

x 7→ X = X(x, y), y 7→ Y = Y (x, y), y′ 7→ Y′ =
Yy + Yx · y′

Xy + Xx · y′
.

Problem
Classify Abel partial differential equations with respect to the
action of point pseudogroup.
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Why is this problem complicated? The action of point
pseudogroup on the fiber RPn of the canonic projection
π1,0 : J1Rn → J0Rn is projective

⇒ it is difficult to calculate invariants of such action

(for example, affine curvature of the plane curve has order 3,
whereas projective curvature of the plane curve has order 7).

Main idea. We replace projection π1,0 : J1Rn → J0Rn by some
bundle with the base J0Rn and fiber Rn+1, with the linear (not
projective) action of the point pseudogroup on the fibers.

So, we just “homogenize” the fiber RPn and obtain the fiber Rn+1,
whose projectivization is RPn.
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Symplectization of contact space J1R

Further we will assume that n = 1; all constructions and theorems
can be easily generated on arbitrary n.
Cartan distribution C : θ 7→ Cθ on J1R is defined by Cartan
differential 1-form κ := dy − y1 dx, i.e.

Cθ = ker κθ, where θ ∈ J1R.

⇒ contact structure on J1R.
Linear 1-form αθ ∈ T ∗θ (J1R) is said to be contact, if kerαθ = Cθ.
It is clear that αθ = λ · κθ, where λ ∈ R∗.

Definition

Symplectization Symp(J1R) of contact space J1R is the set of all
contact 1-forms αθ.

Natural bundle π : Symp(J1R) → J1R with fiber R∗ and
coordinate λ.
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Symplectic structure

Theorem
The following diffeomorphism holds:

Symp(J1R) ' T ∗(J0R) \ {s0},

where s0 is the image of zero section of cotangent bundle T ∗(J0R).

Proof.

We construct diffeomorphism T ∗(J0R) \ {s0}→̃Symp(J1R).
Let βa ∈ T ∗a (J0R) ⇒ La := kerβa ⊂ Ta(J0R)
⇒ (a, La) =: θ ∈ J1R ⇒ αθ := π∗1,0(βa).

αθ |Cθ
= βa |La= 0

⇒ αθ is contact.
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Symplectic coordinates

Put
q := (x, y) and p := (−λy1, λ).

Then
ω := λ · π∗(κ) = p dq

is canonic 1-form

and
Ω := dω = dp ∧ dq

is symplectic structure on symplectization Symp(J1R).
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Symplectization of point transformations and PDE’s

Point transformation ϕ : J1R → J1R acts on contact forms αθ ⇒
ϕ prolongs to symplectomorphism of cotangent bundle
τ∗ : T ∗(J0R) → J0R: q 7→ Q(q), p 7→ Q−1

∗ p (here Q∗ is
Jackobi matrix of diffeomorphism Q : J0R → J0R).

Abel PDE A0(x, y) · yd
1 +A1(x, y) · yd−1

1 + . . .+Ad(x, y) = 0  

A0(q) · pd
1 −A1(q) · pd−1

1 p2 + . . .+ (−1)dAd(q) · pd
2 = 0

— smooth function on T ∗(J0R), which is homogeneous in fiber
coordinates p = (p1, p2).

Problem

Classify smooth functions on T ∗(J0R), which are homogeneous in
fiber coordinates p, with respect to the action of
symplectomorphisms q 7→ Q(q), p 7→ Q−1

∗ p.
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1 +A1(x, y) · yd−1

1 + . . .+Ad(x, y) = 0  

A0(q) · pd
1 −A1(q) · pd−1

1 p2 + . . .+ (−1)dAd(q) · pd
2 = 0

— smooth function on T ∗(J0R), which is homogeneous in fiber
coordinates p = (p1, p2).
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fiber coordinates p, with respect to the action of
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Euler equation, algebra

Function F = F (q,p) is homogeneous with respect to p ⇔

p · Fp = d · F,

i.e. F is solution of the Euler equation.

Let us consider function F as function only on p = (p1, p2)

⇒ linear action of group GL2(R) on the solutions of the Euler
equation

⇒ the same problem as in case of binary forms!
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Differential invariants

Let F ∈ C∞(T ∗(J0R)).

Let Jk be k-jet space of such functions with canonic coordinates
(q,p, u, uσ).

Point pseudogroup G acts on Jk.

Differential invariant of group G is rational function
J ∈ C∞(J∞) such that g ◦ J = J for all g ∈ G.

Invariant derivative is derivative ∇ of algebra C∞(J∞) such
that [∇, ξ] = 0 for all ξ ∈ g.
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Some differential invariants

Theorem
1 Differential forms

ω := pdq = p1dq1 + p2dq2 and ψ :=
up1dp1 + up2dp2

u

are G-invariant.

2 Put H :=
up1p1up2p2 − u2

p1p2

u2
and ∇ :=

up2

u
·
d

dp1
−
up1

u
·
d

dp2
.

Then

J :=
(∇H)2

H3
, r := p1 ·

d

dp1
+ p2 ·

d

dp2
and δ :=

∇
∇H

are G-invariant.
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Invariant coordinate system

Consider invariants J1 := J , J2 := δJ , J3 := δ2J , J4 := δ3J . We
assume, that they are independent ⇒ they define «coordinate
system». Let us rewrite vector field δ, canonic 1-form ω and
invariant 1-form ψ in this coordinate system:

δ =
4∑

i=1

δ(Ji)
D

DJi
,

ω =
4∑

i=1

ω
( D

DJi

)
d̂Ji,

ψ =
4∑

i=1

ψ
( D

DJi

)
d̂Ji.
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Classification theorem

Let us consider functions P : T ∗(J0R) → R, Q,
R : T ∗(J0R) → R4, where Q := (Qi), R := (Ri), i = 1, . . . , 4,
and

δ4J = P(J1, . . . , J4), ω
( D

DJi

)
= Qi(J1, . . . , J4),

ψ
( D

DJi

)
= Ri(J1, . . . , J4).

Theorem
Two Abel PDE’s, which correspond to the homogeneous functions
F and F̃ are point–equivalent, iff

(P,Q,R) = (P̃, Q̃, R̃).
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Proof

“⇒” — obvious.

“⇐” Let
(P,Q,R) = (P̃, Q̃, R̃)

for two homogeneous functions F and F̃ .

Consider “invariant coordinate systems”

S := (J1(F ), J2(F ), J3(F ), J4(F )), S̃ := (J1(F̃ ), J2(F̃ ), J3(F̃ ), J4(F̃ )).

Let
Φ: T ∗(J0R) → T ∗(J0R), Φ(S) = S̃.

Then
Φ ∈ G, because Φ preserves J0R (P) and ω (Q);
Φ ◦ F = µ · F̃ , because Φ preserves ψ (R).

Hence, F and F̃ are point–equivalent.
Pavel Bibikov Teplice nad Bečvou–2013
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