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Classical Liouville mechanics

Classical Hamiltonian system: (M, P, H)

M - phase space: M =T*Q = Q x RN, Q - flat configuration space, dim Q = N
P - Poisson tensor
H - Hamiltonian function: smooth, real-valued function on M

Classical Poisson algebra: Ac = (C>*(M), -,{, },7)

C>*(M) > F, H: smooth complex-valued functions on M

- point-wise commutative dot product

{F,H} :=P(dF,dH): Poisson bracket, i.e. Lie bracket induced by P
F € C>®(M): complex conjugation, being involution in Ac

Classical observables: elements of A ¢ self-adjoint with respect to invo-
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Classical Liouville mechanics

Classical states of Hamiltonian system: o

o - probability distribution:

@ 0 = p (self-conjugation),
Q@ [, 0dQ =1 (normalization),
Q [,f f-0dQ>0for f e C®(M) <> o >0 (positivity).

Notice, that g are closed with respect to commutative and associative
multiplication being convolution:

01(6) * 02(E) = / A e1(O)ea€ — €)= es(6).

Pure states g, are these ¢ which are idempotent
gpure * qure = qure’

i.e. Opure = 0(§ — &p) are Dirac delta distributions (Hamiltonian mechanics).
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Classical Liouville mechanics

Mixed states g, can be characterized as convex linear combinations of pure

states g,(g%‘})e

oneelE / Ao plEo)ael (€) = /M Ao p(£0)3(E — &) = P(E),

where p(&) = 0 and [, dé, p(&p) = 1

Quantities measured in experiment: (A),

(A),: expectation value of an observable A in a state o:

(A = /M (A-0)(€) de

For classical pure states o(§) = 6(€ — &)
(A)se—g,) = Al&p)-

Classical Hamiltonian mechanics case.
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Classical Liouville mechanics

Time evolution of expectation value of any observable in arbitrary

state for a given Hamiltonian system

Two equivalent descriptions:

@ Time evolution of observables (classical Heisenberg picture)

dA
T (O —{A®). Hy =0

@ Time evolution of states (classical Schrodinger picture)

%(t) —{H,o(t)} =0 (Liouville equation)

Both descriptions yield equal predictions of measurements:

(A(0)g() = (A(t))o(0)
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Classical Liouville mechanics

For pure state o(&) = §(€ — &)
do _ dgi i —
4 - He®)}=0 = = —{(t)H} =0

Schrddinger picture for §(& — &) collapse onto Heisenberg picture for fi.

Canonical (Darboux) coordinate chart: &
©=(q,p): {d.¢}={p.p}t=0, {d,p}=20

P Z_/\a_p,- (PU)Z(_O, é)

Time evolution of canonical coordinates

oH oH
( )_{q H}_ p_a (Pi)t {th}__Wl

1
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Canonical quantization of Hamiltonian mechanics

Classical uncertainty relations for canonical coordinates in a given
state o

AGAP 20, DA=[(AR), — (A2

o°

Equality occurs for classical coherent states. For example in a standard classical
mechanics for pure states o(§) = §(& — &p).

Quantization process

Classical canonical uncertainty relations are modified to quantum Heisenberg
uncertainty relations

. : 1.
Aq'Ap; >0 = Aq'Ap > Ehdj

h — deformation parameter (Planck constant).

Realization: appropriate deformation of classical Liouville mechanics.
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Canonical quantization of Hamiltonian mechanics

Deformation of classical Poisson algebra to

Ag = (C*(M,h), »,[, ], *)

*: deformation of dot product to some noncommutative star product
[, ]: deformation of Poisson bracket to new Lie bracket (quantum Poisson
bracket)

*: deformation of classical involution to new quantum involution

Desired properties of «:
Q@ FxH=F -H+> 2, h*C(F,H), Cx — bilinear operators,
Q@ Fx(GxH)=(F«*G)x*H (associativity),
Q [F,H].={F,H} +o(h)
O (FxH)* = H* x F*
Q@ Fxl=1xF=F, F,G,HeAg

Quantum observables: self adjoint functions with respect to quantum

involution, A dependent and complex in general.
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Canonical quantization of Hamiltonian mechanics

The existence of a global *-product for a general Poisson manifold:

Kontsevich (1997)

Invariant formulation of a x-product on M = Q x RV

Vector-field representation of a Poisson tensor:

N

N
P=> XAY;=) (X®Y,-Y,®X)
j=1

Jj=1

[Xi,Yj] =[Xi, X;] =[Yi, Y]] =0 = Jacobi identity
Natural *-product induced by X, Y:

x=exp ;ih;ZAVI = o [ 5in DY, - Vi)

Maciej Btaszak JOINT WO! Wi ; O Invariant canonical quantization of classical mechanics



Canonical quantization of Hamiltonian mechanics

Natural Lie bracket:
[F,H]. = —_;[F, Gl, = _':;i(F*H_ Hx* F)={F,H} + o(h).
i i

Quantum involution coincides with the classical one:

FxH=HxF.

vy

Bad news: non uniqueness

There exist different vector fields X/, Y/ giving the same Poisson tensor. In
consequence, the whole family of x-products is related to the same Poisson tensor.

Good news: all these x-products are equivalent.
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Canonical quantization of Hamiltonian mechanics

Two star-products * and +” on a Poisson manifold (M, P) are said to be
equivalent if there exists a morphism

S=id+> h*S
k=1

Sk — linear operators on C°°(M), that

S(FxH)=SF~* SH.

In the case of M = Q xRV, if P=3X; A Y; =3 X/ A Y/ and (X,Y) = Ag,
(X', Y") = Al then there exists an appropriate S making Aq and Aj
isomorphic.

Equivalent descriptions: (A,*) < (A" = SA, ') J
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Canonical quantization of Hamiltonian mechanics

For any Darboux coordinates (g, p) on M = R? there is a natural choice

X=085 Y=0,

leading to Moyal product in that chart
1 <« 1.«
*M = exp <2ih3q3p ~3 'h3p3q>

There is also a family of equivalent products generated by classical canonical
transformations T. For example

*T = exp (;ihqup — ;ih5p3q>

Dy = q*04 — 2qp0p, Dp=q 20,, [Dg,Dp]=0

and

P =0,N0, =Dy AD,
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Canonical quantization of Hamiltonian mechanics

Related canonical transformation T: (q,p) — T(q,p) = (—q7 1, 4°p) J

S7 morphism:
Fxr H= Sr(S7'F %m S7'H)

1
Sr=id +Zh2(2q*28§ +q%pd3 — q 10405) + o(h*)

Both products lead to a canonical quantum brackets

|Iq7 P]]*M = 13 |Iq7 p]]*T =1

Infinite family of admissible quantization procedures. )

Admissible choice of quantization, verified by experiment:
Moyal quantum algebra in Euclidean chart on @ = R" with quantum

observables equal to classical ones.
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Canonical quantization of Hamiltonian mechanics

Transformation of star-product

*S\;,p) RN <P (A, xX'P1)

57
*(MX/,P') (S7 LA % ( P ))
The class of canonical point transformations

(x,p) = T(x, p') = (&(x"), [¢' ().

New coordinates on Q define flat metric g with respective connection.

2 .
Sr=id+— (3r'( V5 (X' )41 Oy, + 3T (X' )00y Dy

+ (2, (VT5X) = B Ti(x')) Pl Oy ) + 0(%)
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Canonical quantization of Hamiltonian mechanics

Quantum states

For a phase space M = Q x RN and a x-product defined on it, states are real
quasi-probabilistic distributions from H = L?(M), defined by:

@ o = p (self-conjugation),
Q fM 0dQ =1 (normalization),
Q [, f*fx0dQ >0 for f € C=(M;h) (positive define).

Pure states g, € H are these g which are idempotent

1

qure * qure = W@pure'

Mixed states p,,i, € H can be characterized as convex linear combinations of pure
(A)
states opure
A
Omix = ZPAQE)UZev
A

where 0 < py <land ), py=1
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Canonical quantization of Hamiltonian mechanics

Expectation value of quantum observable A in a state o

(A)p = /M (Ax 0)(€) d = /M (A- )(€) de.

Time evolution of expectation value (A),

@ Time evolution of observables (quantum Heisenberg picture)

dA

T (O~ [A@). HI. =0

@ Time evolution of states (quantum Schrodinger picture)

Both descriptions yield equal predictions of measurements:

<A(O)>g(t) = <A(t)>g(0)
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Quantum mechanics over configuration space

Ordinary quantum mechanics: operator representation over

configuration space Q (Btaszak, Domarniski 2012)

Consider Euclidean chart (x, p) with *p-product. The Hilbert space of states
H = L%(M) takes the form of a Hilbert space L?(R?N) which can be written as
the following tensor product of the Hilbert space L2(R") and a space dual to it
(L2(RY))*:

H = (L2(R"))" @m LA(R"),

where the tensor product ®y, is defined by

H o V(x,p)=(p* @mY)(x,p) = (Qﬂlh),v /dy e EPYD <x - ;)/> (0 (x + ;)/)

where ¢, 1) € L2(RV).

Pure states: 0,,.(x,p) = (¢* @m ¢)(x, p) — Wigner functions J
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Quantum mechanics over configuration space

Quantum observables A € A treated as operators A=A *p take the form
A*M = i QM AW(a7 ﬁ)a

where Aw (g, p) is the function A of symmetrically ordered (Weyl ordered)
operators of position and momentum: §' = x’ and p; = —ihd,;. In particular,
from this it follows that

A*M V= 90* QM AW(C/\L ﬁ)qpa

Vo A= Aly(8.p)¢" ©m v,
for W = p* @um 9 and @, € L2(RN).
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Quantization in curvilinear canonical coordinates

Now, let us consider the x-product in an arbitrary coordinate system (x, p). Let S
denotes an isomorphism giving the equivalence with xy;. Then the twisted tensor
product, denoted by ®g, can be defined by the formula

¢ ®s Y = S(¢" ®um V),
and the new S-ordering by the formula
As(§, p) = (S~ A)w(4, p)-

All previous formulas hold true provided that we replace the tensor product ®y
with ®s and the Weyl ordering with S-ordering.
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Quantization in curvilinear canonical coordinates

Transformation of states

(¢* @m ) o T = (Ur¢)* ®s, Ury,

where

(Oro)(x) = p(6(x)) € [2(Q,dp), du=]g|? dx'.

4

Transformation of operators

5 (@.8) = (S7H (Ao T))w(§,#') = UrAw(4,p) U7,

where
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Quantization in curvilinear canonical coordinates

Example: Quantization in canonical spherical coordinates

Let us consider a canonical point transformation
T(r, 0, ¢7 Pr, Po, P¢>) = (Xv)/v Z, Px, Py, pz)

X = rsinfcos ¢,

y = rsinfsin ¢,
z = rcosb,

. rp,sin29cos¢—|—pgsinﬁcosﬂcosqﬁ—p¢sin¢
= rsin@ ’
. rp,sinzesin¢>—|—pgsin0c0595in¢>+p¢cos¢
Y rsinf ’
__rp,cost) — pgsin 6
b= .

r

and related isomorphism St:
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Quantization in curvilinear canonical coordinates

1 1 1 1
—id4=R2 2 _ g2 _ 2
Sr=id+; [r 92 -2, 2(Sin29 3>ap9 + =055,

1 1 1 1
= —p¢8[3;,¢ 3 83 = sm 0 cos 98982¢ A mp¢8§98p¢
1 1
PoOp, 0z, = a¢ap9 Op,y — 2rsin2 00,0;, — Era,age

1 (1 1
+ ﬁp¢3,28p¢ + ﬁpgaﬁﬁpe — sin 9<§pr sinf — L Pocos 6’) 8pr3§¢

1 1 ) 2 1 .
+ 20605, 0p, = 5Pr0p,0py + P05, 0py O, + ~060p,0p, | + o(1).

A quantum system after transformation to spherical coordinates will be described
by a Hilbert space L?(V,du), where V = (0, 00) x [0, 7] x [0,27) and
du(r,0,$) = r*sinfdrdf do.
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Quantization in curvilinear canonical coordinates

The momentum operators associated to the spherical coordinate system take the

form

~ . 1 N 1 .
p,——/h(@,—i—;), pg——/h<89+2tan9>, Py = —ih0y.

Hydrogen atom

In the Cartesian coordinates, classical Hamiltonian H takes the form:

PR+ pi+p: 1 e

H(X,y,Z,Px,Pyapz) - 2m - 47'('60 /X2 +y2 +22.

In the spherical coordinates it can be written in the form:

1 [ 1 €
/ _ = Fo _ -
H (r707¢7 PmPo,qu) - 2m (pr + r2 + r2 Sin2 9) 47T60 r '
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Quantization in curvilinear canonical coordinates

The action of St on H’ results in the following function
1 p3 P 1 e h? 1
S-IH = re ¢ — R 1).
! 2m (Pr i r? - r2sin® @ 4reg r - 8mr? \sin0 -

From this it can be verified that to H’ will correspond the following operator

h? 1 1 1 e
H. (g, p 2 — O+ —-05 )| — ——
5,(8,p) = —5 {6 + = 8 = (89 g T Sin208¢>} pr—

Note that the expression in square brackets is just the Laplace operator written in
spherical coordinates.
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Covariant representation of Hamiltonian operators

Classical Hamiltonians quadratic in momenta

Consider a Hamiltonian H in Euclidean coordinates

1 .
H(x, p) = EKU(X)p,'Pj + V(x),

where K% are components of some symmetric tensor K. In curvilinear coordinates
(x’, p') it takes a similar form

1 .
H'(X', p') = 5K (X)pipj + V(X).

v

Related quantum Hamiltonian

Using flatness property of the Levi-Civita connection of g(x’), we get

h2 - 1 .
Hs (§',p') = - (V;K’Uvj + 4K”{,j) + V(X).

ViK'iV; := Ak: pseudo-Laplace operator. J
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Covariant representation of Hamiltonian operators

For a natural Hamiltonians, when K’ = gii:

w2
Hs, (', F') = =5 8"ViVi+ V(X),

VigiV;=giV;V; = A — Laplace operator.

Consider a classical Hamiltonian H, which in curvilinear coordinates is
H/(X/’ pl) = K/ijk(xl)pll'pjl'p;o

where K’k are components of some symmetric tensor K.

Using flatness property of the Levi-Civita connection of g(x’), the related
Hamiltonian operator takes the form

1 , ; 1 .. 1 .
Hs (4, p) = 5;}13 (V,K"kajvk + Vi VK"V, + kaK"Jf,.j + ZK’Uf‘,ij).
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Canonical quantization in Riemann space

Natural generalization: dropping flatness property of the connection + admissible
generalization of S:

h? : ]
S=1+4 ((3r',,(x)r,fk(x) + AR (%))Dp,Ope + 3Tk (%) D Oy D,

J

+ (205, () = BueT(x)) Pid0p, By, ) + o).

where Rj; is the Ricci tensor.
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Canonical quantization in Riemann space

Quantization of Hamiltonians quadratic in momenta

1 1, 1 )
Hs(d, p) = —51° <V;K”Vj + oK — 2= a)KUR,-,-> V.

|n particular, Whel K — g
A A 1h2 \V/ i'v 1 1 a)R L
HS(qa p) - 9 l'gj J 4( ) V’

where R is the scalar curvature.

vy

Quantization of Hamiltonians cubic in momenta

1 - . 1 7 1 .
Hs(@, ﬁ) = 5ih3 (V,’KUkVJ‘Vk aF V,-VJ-K’J"Vk ar kaK"’k;,-j 4= ZKUI(;,-J-V/(

it )V KRy — 2= a)KJkRjkV,-)

Maciej Btaszak JOINT WO! Wi ; O Invariant canonical quantization of classical mechanics



Ambiguities in quantization process

Alternative admissible quantization

Let us consider another invariant star product related to the decomposition of the
classical Poisson tensor P

1 1
SIS EDRASD WAL RS IR
Xy, Yuin) - P()_(>1,...,T/>N;h)>g,

where P is some polynomial of 2/ variables with coefficients dependent on A,
such that

P(X1,..., XN, Y1, s Yn) = P(Ye, ..o, YN, X1, - oo, Xi).

What is important, the complex-conjugation is the involution for this product as
well.
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Ambiguities in quantization process

An isomorphism S intertwining the previous star-product with the new one reads

S= exp(P(Xl, coog YN; h))

Let us take P(Xi,..., Yn;h) = —%h2 Zku- XiX;YiY; and choose as the canonical
star-product in a flat case the new product with X; = 0,i, Y; = 0p, in a
pseudo-Euclidean coordinates and choose the quantum observables Ag = Ac.
Such quantization is equivalent with the choice of standard Moyal star-product
with another choice of quantum observables. Actually, for any curvilinear

coordinates

1
Ag = exp Z#kavjapkapj Ac.
k.Jj
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Ambiguities in quantization process

Now, invariant quantization of a quadratic in momenta classical Hamiltonian gives

the operator
2

h "
Hs(aa ﬁ) = _EVIKUVJ + Va

and for cubic in momenta term the related operator form

1 ., .
Hs(§, p) = 5;53 (V,K'kajvk - v,ijukvk>.

The extension onto non-flat case remains the same except the new form of
quantum observable. So, with the particular choice &« = 1, Hamiltonian operators
from previous slide are admissible quantum Hamiltonians for classical systems
quadratic and cubic in momenta in any Riemann space. Such choice of
quantization was called in a paper (Duval 2005) a “minimal” quantization, but
was introduced ad'hoc without any justification from basic principles. Moreover,
the same choice was done in by (Benenti 2002) in order to investigate quantum
integrability and quantum separability of classical Stackel systems.
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